1887

Abstract

5-Aminosalicylate (5AS) was converted to -malate, pyruvate and ammonia by cell-free extracts from sp. BN9 in the presence of glutathione. In the absence of glutathione, 5AS was oxidized to the ring-fission product -4-amino-6-carboxy-2-oxo-hexa-3,5-dienoate (-ACOHDA). Glutathione catalysed the spontaneous isomerization of -ACOHDA to its -isomer. The same reaction was catalysed by light and by acidic conditions. -ACOHDA was enzymically deaminated to fumarylpyruvate (-2,4-dioxo-5-hexenoate). The -ACOHDA hydrolase was induced after growth of sp. BN9 with 5AS, but not after growth with acetate or nutrient broth. At the fumarylpyruvate stage, the metabolism of 5AS converged with a pathway described for the degradation of gentisate. Fumarylpyruvate was cleaved by sp. BN9 to fumarate and pyruvate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-5-1019
1993-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/5/mic-139-5-1019.html?itemId=/content/journal/micro/10.1099/00221287-139-5-1019&mimeType=html&fmt=ahah

References

  1. Altenschmidt U., Eckerskorn C., Fuchs G. 1990; Evidence that enzymes of novel aerobic 2-aminobenzoate metabolism in denitrifying Pseudomonas are coded on a small plasmid. European Journal of Biochemistry 194:647–653
    [Google Scholar]
  2. Altenschmidt U., Fuchs G. 1992; Novel aerobic 2-amino-benzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the gene on a 8-kbp plasmid, and cloning and sequencing of the gene from a denitrifying Pseudomonas sp. European Journal of Biochemistry 205:721–727
    [Google Scholar]
  3. Aoki K., Shinke R., Nishira H. 1983; Metabolism of aniline by Rhodococcus erythropolis AN-13. Agricultural and Biological Chemistry 47:1611–1616
    [Google Scholar]
  4. Appel M., Raabe T., Lingens F. 1984; Degradation of o-toluidine by Rhodococcus rhodochrous. FEMS Microbiology Letters 24:123–126
    [Google Scholar]
  5. Bachofer R. 1976; Mikrobieller Abbau von Säureanilid-Fungiziden. Zentralblatt für Bakteriologie und Hygiene.I. Abteilung Originale B 162:153–156
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Burlina A. 1985; Fumarate. In Methods of Enzymatic Analysis, 3rd edn. VII pp. 34–38 Bergmeyer H. U. Edited by Weinheim, Germany: VCH;
    [Google Scholar]
  8. Cain R. B. 1968; Anthranilic acid metabolism by microorganisms. Formation of 5-hydroxyanthranilate as an intermediate in anthra-nilate metabolism by Nocardia opaca.. Antonie van Leeuwenhoek 34:417–432
    [Google Scholar]
  9. Cartwright N. J., Cain R. B. 1959; Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochemical Journal 73:305–314
    [Google Scholar]
  10. Chung K. -T., Stevens S. E., Cerniglia C. E. 1992; The reduction of azo dyes by the intestinal microflora. Critical Reviews in Microbiology 18:175–190
    [Google Scholar]
  11. Crawford R. L., Hutton S. W., Chapman P. J. 1975; Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. Journal of Bacteriology 121:794–799
    [Google Scholar]
  12. Crawford R. L., Frick T. D. 1977; Rapid spectrophotometric differentiation between glutathione-dependent and glutathione-independent gentisate and homogentisate pathway. Applied and Environmental Microbiology 34:170–174
    [Google Scholar]
  13. Da Fonseca-wollheim F., Bergmeyer H. U., Gutman I. 1974; Ammoniak. In Methoden der enzymatischen Analyse, 3. Aüflage, Band II pp. 1850–1853 Bergmeyer H. U. Edited by Weinheim, Germany: VCH;
    [Google Scholar]
  14. Durham N. N. 1956; Bacterial oxidation of p-aminobenzoic acid by Pseudomonas flourescens. Journal of Bacteriolog y 72:333–336
    [Google Scholar]
  15. Durham N. N. 1958; Studies on the metabolism of p-nitrobenzoic acid. Canadian Journal of Microbiology 4:141–148
    [Google Scholar]
  16. Dull B. J., Salata K., Van Langenhove A., Goldman P. 1987; 5-Aminosalicylate: oxidation by activated leucocytes and protection of cultured cells from oxidative damage. Biochemical Pharmacology 36:2467–2472
    [Google Scholar]
  17. Hagedorn S. R., Bradley G., Chapman P. J. 1985; Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other Gram-positive bacteria. Journal of Bacteriology 163:640–647
    [Google Scholar]
  18. Hallas L. E., Alexander M. 1983; Microbial transformation of nitroaromatic compounds in sewage effluent. Applied and Environmental Microbiology 45:1234–1241
    [Google Scholar]
  19. Harper M. R., Lipscomb J. D. 1990a; Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans.. Journal of Biological Chemistry 265:6301–631l
    [Google Scholar]
  20. Harper M. R., Lipscomb J. D. 1990b; Gentisate 1,2-dioxygenase from Pseudomonas. Substrate coordination to active site Fe2+ and mechanism of turnover. Journal of Biological Chemistry 265:22187–22196
    [Google Scholar]
  21. Haug W., Schmidt A., Nörtemann B., Hempel D. C., Stolz A., Knackmuss H. -J. 1991; Mineralization of the sulphonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulphonate-degrading bacterial consortium. Applied and Environmental Microbiology 57:3144–3149
    [Google Scholar]
  22. Helm V., Reber H. 1979; Investigation on the regulation of aniline utilization in Pseudomonas acidovorans strain An 1. European Journal of Applied Microbiology 7:191–199
    [Google Scholar]
  23. Ichiyama A., Nakamura S., Kawai H., Honjo T., Nishizuka Y., Hayaishi O., Senoh S. 1965; Studies on the metabolism of the benzene ring of tryptophan in mammalian tissues. II. Enzymic formation of α-aminomuconic acid from 3-hydroxyanthranilic acid. Journal of Biological Chemistry 240:740–749
    [Google Scholar]
  24. Khan A. K. A., Piris J., Truelove S. C. 1972; An experiment to determine the active therapeutic moiety of Sulphasalazine. Lancet ii:892–895
    [Google Scholar]
  25. Lack L. 1961; Enzymic cis-trans isomerization of maleylpyruvic acid. Journal of Biological Chemistry 236:2835–2840
    [Google Scholar]
  26. Ladd J. N. 1962; Oxidation of anthranilic acid by a species of Achromobacter isolated from soil. Nature; London: 1941099–1100
    [Google Scholar]
  27. Latorre J., Reineke W., Knackmuss H. -J. 1984; Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Archives of Microbiology 140:159–165
    [Google Scholar]
  28. Morgan E. J., Friedman E. 1938; Interaction of maleic acid with thiol compounds. Biochemical Journal 32:733–742
    [Google Scholar]
  29. Nishizuka Y., Ichiyama A., Hayaishi O. 1970; Metabolism of the benzene ring of tryptophan (mammals). Methods in Enzymology 17A:463–491
    [Google Scholar]
  30. Nörtemann B., Baumgarten J., Rast H. G., Knackmuss H. -J. 1986; Bacterial communities degrading amino- and hydroxy-naphthalene-2-sulphonates. Applied and Environmental Microbiology 52:1195–1201
    [Google Scholar]
  31. Peppercorn M. A., Goldman P. 1972; The role of intestinal bacteria in the metabolism of salicylazosulphapyridine. Journal of Pharmacology and Experimental Therapeutics 181:555–562
    [Google Scholar]
  32. Pfennig N., Lippert K. D. 1966; Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archie für Mikrobiologie 55:245–256
    [Google Scholar]
  33. Raabe T., Appel M., Lingens F. 1984; Degradation of p-toluidine by Pseudomonas testosteroni.. FEMS Microbiology Letters 25:61–64
    [Google Scholar]
  34. Rafii F., Franklin W., Cerniglia C. E. 1990; Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Applied and Environmental Microbiology 56:2146–2l51
    [Google Scholar]
  35. Schackmann A., Müller R. 1991; Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Applied Microbiology and Biotechnology 34:809–813
    [Google Scholar]
  36. Seltzer S., Lin M. 1979; Maleylacetone cis-trans-isomerase. Mechanism of the interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme. Journal of the American Chemical Society 101:3091–3097
    [Google Scholar]
  37. Sharak-Genthner B. R., Davies C. L., Bryant M. P. 1981; Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Applied and Environmental Microbiology 42:12–19
    [Google Scholar]
  38. Stolz A. 1989 Metabolismus non Amino- und Hydroxysalicylsäuren durch einen Bakterienstamm der Gattung Pseudomonas PhD thesis University of Stuttgart, Stuttgart, Germany:
    [Google Scholar]
  39. Stolz A., Nörtemann B., Knackmuss H. -J. 1992; Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage. Bio-chemical Journal 282:675–680
    [Google Scholar]
  40. Talley E. A., Fitzpatrick T. J., Porter W. L. 1959; Formation of fumaramic acid from asparagine in phosphate buffer. Journal of the American Chemical Society 81:174–175
    [Google Scholar]
  41. Tanaka H., Sugiyama S., Yano K., Arima K. 1957; Isolation of fumarylpyruvic acid as an intermediate of the gentisic acid oxidation by Pseudomonas ovalis var. S-5. Bull. Journal of the Agricultural and Chemical Society Japan 21:67–68
    [Google Scholar]
  42. Taniuchi H., Hatanaka M., Kuno S., Hayaishi O., Nakajima M., Kurihara M. 1964; Enzymatic formation of catechol from anthranilic acid. Journal of Biological Chemistry 239:2204–2211
    [Google Scholar]
  43. Tjørnelund J., Hansen S. H., Cornett C. 1989; New metabolites of the drug 5-aminosalicylic acid. I. N-ß-d-Glucopyranosyl-5-aminosalicyclic acid. Xenobiotica 19:891–899
    [Google Scholar]
  44. Vassault A. 1985; Lactate dehydrogenase. UV-method with pyruvate and NADH. In Methods of Enzymatic Analysis, 3rd edn. III pp. 118–126 Bergmeyer H. U. Edited by Weinheim, Germany: VCH;
    [Google Scholar]
  45. Weisburger J. H., Weisburger E. K. 1966; Chemicals as causes of cancer. Chemical and Engineering News124–142
    [Google Scholar]
  46. Wheeler L. A., Soderberg F. B., Goldman P. 1975; The relationship between nitro group reduction and the intestinal microflora. Journal of Pharmacology and Experimental Therapeutics 194:135–144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-5-1019
Loading
/content/journal/micro/10.1099/00221287-139-5-1019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error