1887

Abstract

Summary: The sensitivity of elongation factor Tu (EF-Tu) from different species of bacteria to the EF-Tu-binding antibiotics efrotomycin, pulvomycin and MDL 62879 was tested by measuring the effect of these antibiotics on cell-free protein synthesis systems. EF-Tu from four different Gram-negative species was sensitive to all three antibiotics. Among Gram-positive bacteria, EF-Tu of and was resistant to efrotomycin and less sensitive to pulvomycin than EF-Tu of Gram-negative bacteria. EF-Tus from streptococci were significantly less sensitive than EF-Tus from Gram-negative bacteria to both efrotomycin and pulvomycin. All of the EF-Tus were sensitive to MDL 62879. The same sensitivity pattern emerged from GDP exchange assays, performed with partially purified EF-Tu from different bacterial species and pure EF-Ts. These results suggest that the site of action of MDL 62879 is more conserved among bacterial species than those of efrotomycin and pulvomycin. Heterogeneity of EF-Tus from different bacterial species was also reflected in differences in their apparent molecular masses estimated by SDS-PAGE. EF-Tus from the Gram-positive species had higher molecular masses than those from all but one of the Gram-negative species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-4-769
1993-04-01
2021-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/4/mic-139-4-769.html?itemId=/content/journal/micro/10.1099/00221287-139-4-769&mimeType=html&fmt=ahah

References

  1. Akita E., Maeda K., Umezawa H. 1963; Isolation and characterization of labilomycin, a new antibiotic. Journal of Antibiotics 16:147–147
    [Google Scholar]
  2. Anborgh P.H., Parmeggiani A. 1991; New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EM BO Journal 10:779–779
    [Google Scholar]
  3. Arai K., Clark B.F.C., Duffy L., Jones M.D., Kaziro Y., Laursen R.A., L'Italien J., Miller D.L., Nagarkatti S., Nakamura S., Nielsen K.M., Petersen T.E., Takahashi K., Wade M. 1980; Primary structure of elongation factor Tu from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 77:1326–1326
    [Google Scholar]
  4. Fasano O., Bruns W., Crechet J.-B., Sander G., Parmeggiani A. 1978; Modification of elongation-factor-Tu-guanine-nucleotide interaction by kirromycin. European Journal of Biochemistry 89:557–557
    [Google Scholar]
  5. Filer D., Furano A.V. 1980; Portions of the gene encoding elongation factor Tu are highly conserved in prokaryotes. Journal of Biological Chemistry 255:728–728
    [Google Scholar]
  6. Frost B.M., Valiant M.E., Weissberger B., Dulaney E.L. 1976; Antibacterial activity of efrotomycin. Journal of Antibiotics 29:1083–1083
    [Google Scholar]
  7. Frost B.M., Valiant M.E., Dulaney E.L. 1979; Antibacterial activity of heneicomycin. Journal of Antibiotics 32:626–626
    [Google Scholar]
  8. Georgopapadakou N.H., Smith S.A., Bonner D.P. 1982; Penicillin binding proteins in aStaphylococcus aureus strain resistant to specific /i-lactam antibiotics. Antimicrobial Agents and Chemotherapy 22:172–172
    [Google Scholar]
  9. Gloeckner C., Wolf H. 1984; Mechanism of natural resistance to kirromycin-type antibiotics in actinomycetes. FEMS Microbiology Letters 25:121–121
    [Google Scholar]
  10. Hall C.C., Watkins J.D., Georgopapadakou N.H. 1989; Effects of elfamycins on elongation factor Tu fromEscherichia coli andStaphylococcus aureus. Antimicrobial Agents and Chemotherapy 33:322–322
    [Google Scholar]
  11. Hall C.C., Watkins J.D., Georgopapadakou N.H. 1991; Comparison of the Tu elongation factors fromStaphylococcus aureus andEscherichia coli: possible basis for elfamycin insensitivity. Antimicrobial Agents and Chemotherapy 35:2366–2366
    [Google Scholar]
  12. Landini P., Bandera M., Goldstein B.P., Ripamonti F., Soffi-Entini A., Islam K., Denaro M. 1992; Inhibition of bacterial protein synthesis by elongation factor Tu-binding antibiotics MDL 62879 and efrotomycin. Biochemical Journal 283:649–649
    [Google Scholar]
  13. Leberman R., Antonsson B., Giovanelli R., Guariguata R., Schumann R., Wittinghofer A. 1980; A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Analytical Biochemistry 104:29–29
    [Google Scholar]
  14. Parmeggiani A., Swart G. W. M. . 1985; Mechanism of action of kirromycin-like antibiotics. Annual Reviews of Microbiology 39:557–557
    [Google Scholar]
  15. Pingoud A., Block W., Urbanke C., Wolf H. 1982; The antibiotics kirromycin and pulvomycin bind to different sites on the elongation factor Tu fromEscherichia coli. European Journal of Biochemistry 123:261–261
    [Google Scholar]
  16. Ravel J.M., Shorey R.L. 1971; GTP-dependent binding of aminoacyl-tRNA toEscherichia coli ribosomes. Methods in Enzym- ology 20:306–306
    [Google Scholar]
  17. Selva E., Beretta G., Montanini M., Saddler G.S., Gastaldo L., Ferrari P., Lorenzetti R., Landini P., Ripamonti F., Goldstein B.P., Berti M., Montanaro L., Denaro M. 1991; Antibiotic GE 2270 A: a novel inhibitor of bacterial protein synthesis. Journal of Antibiotics 44:693–693
    [Google Scholar]
  18. Siegel J.L., Hurst S.F., Liberman E.S., Coleman S.E., Bleiweis A.S. 1981; Mutanolysin-induced spheroplasts ofStreptococcus mutans are true protoplasts. Infection and Immunity 31:808–808
    [Google Scholar]
  19. Smith I., Paress P. 1978; Genetic and biochemical characterization of kirromycin resistance mutations in Bacillus subtilis. . Journal of Bacteriology 135:1107–1107
    [Google Scholar]
  20. Traub P., Mizushima S., Lowry C.V., Nomura M. 1971; Reconstitution of ribosomes from subribosomal components. Methods in Enzymology 20:306–306
    [Google Scholar]
  21. Van Der Meide P.H., Borman T.H., Van Kimmenade A.M.A., Van DE PUTTE P., Bosch L. 1980; Elongation factor Tu isolated fromEscherichia coli mutants altered intufA andtufB. Proceedings of the National Academy of Sciences of the United States of America 77:3922–3922
    [Google Scholar]
  22. Woerner W., Wolf H. 1982; Kirromycin-resistant elongation factor Tu from wild-type of Lactobacillus brevis. FEBS Letters 146:322–322
    [Google Scholar]
  23. Woerner W., Gloeckner C., Mierzowski M., Wolf H. 1983; On heterogeneity of elongation factor Tu among eubacteria. FEMS Microbiology Letters 18:69–69
    [Google Scholar]
  24. Wolf H., Chinali G., Parmeggiani A. . 1974; Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proceedings of the National Academy of Sciences of the United States of America 71:4910–4910
    [Google Scholar]
  25. Wolf H., Chinali G., Parmeggiani A. 1977; Mechanism of inhibition of protein synthesis by kirromycin. European Journal of Biochemistry 75:67–67
    [Google Scholar]
  26. Wolf H., Assmann D., Fischer E. 1978; Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP and aminoacyl tRNA. Proceedings of the National Academy of Sciences of the United States of America 75:5324–5324
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-4-769
Loading
/content/journal/micro/10.1099/00221287-139-4-769
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error