1887

Abstract

The sensitivity of elongation factor Tu (EF-Tu) from different species of bacteria to the EF-Tu-binding antibiotics efrotomycin, pulvomycin and MDL 62879 was tested by measuring the effect of these antibiotics on cell-free protein synthesis systems. EF-Tu from four different Gram-negative species was sensitive to all three antibiotics. Among Gram-positive bacteria, EF-Tu of and was resistant to efrotomycin and less sensitive to pulvomycin than EF-Tu of Gram-negative bacteria. EF-Tus from streptococci were significantly less sensitive than EF-Tus from Gram-negative bacteria to both efrotomycin and pulvomycin. All of the EF-Tus were sensitive to MDL 62879. The same sensitivity pattern emerged from GDP exchange assays, performed with partially purified EF-Tu from different bacterial species and pure EF-Ts. These results suggest that the site of action of MDL 62879 is more conserved among bacterial species than those of efrotomycin and pulvomycin. Heterogeneity of EF-Tus from different bacterial species was also reflected in differences in their apparent molecular masses estimated by SDS-PAGE. EF-Tus from the Gram-positive species had higher molecular masses than those from all but one of the Gram-negative species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-4-769
1993-04-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/4/mic-139-4-769.html?itemId=/content/journal/micro/10.1099/00221287-139-4-769&mimeType=html&fmt=ahah

References

  1. Akita E., Maeda K., Umezawa H. 1963; Isolation and characterization of labilomycin, a new antibiotic. Journal of Antibiotics 16:147–151
    [Google Scholar]
  2. Anborgh P. H., Parmeggiani A. 1991; New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO Journal 10:779–784
    [Google Scholar]
  3. Arai K., Clark B. F. C., Duffy L., Jones M. D., Kaziro Y., Laursen R. A., L’Italien J., Miller D. L., Nagarkatti S., Nakamura S., Nielsen K. M., Petersen T. E., Takahashi K., Wade M. 1980; Primary structure of elongation factor Tu from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 77:1326–1330
    [Google Scholar]
  4. Fasano O., Bruns W., Crechet J.-B., Sander G., Parmeggiani A. 1978; Modification of elongation-factor-Tu guanine-nucleotide interaction by kirromycin. European Journal of Biochemistry 89:557–565
    [Google Scholar]
  5. Filer D., Furano A. V. 1980; Portions of the gene encoding elongation factor Tu are highly conserved in prokaryotes. Journal of Biological Chemistry 255:728–734
    [Google Scholar]
  6. Frost B. M., Valiant M. E., Weissberger B., Dulaney E. L. 1976; Antibacterial activity of efrotomycin. Journal of Antibiotics 29:1083–1091
    [Google Scholar]
  7. Frost B. M., Valiant M. E., Dulaney E. L. 1979; Antibacterial activity of heneicomycin. Journal of Antibiotics 32:626–629
    [Google Scholar]
  8. Georgopapadakou N. H., Smith S. A., Bonner D. P. 1982; Penicillin binding proteins in a Staphylococcus aureus strain resistant to specific β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 22:172–175
    [Google Scholar]
  9. Gloeckner C., Wolf H. 1984; Mechanism of natural resistance to kirromycin-type antibiotics in actinomycetes. FEMS Microbiology Letters 25:121–124
    [Google Scholar]
  10. Hall C. C., Watkins J. D., Georgopapadakou N. H. 1989; Effects of elfamycins on elongation factor Tu from Escherichia coli and Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 33:322–325
    [Google Scholar]
  11. Hall C. C., Watkins J. D., Georgopapadakou N. H. 1991; Comparison of the Tu elongation factors from Staphylococcus aureus and Escherichia coli: possible basis for elfamycin insensitivity. Antimicrobial Agents and Chemotherapy 35:2366–2370
    [Google Scholar]
  12. Landini P., Bandera M., Goldstein B. P., Ripamonti F., Soffientini A., Islam K., Denaro M. 1992; Inhibition of bacterial protein synthesis by elongation factor Tu-binding antibiotics MDL 62879 and efrotomycin. Biochemical Journal 283:649–652
    [Google Scholar]
  13. Leberman R., Antonsson B., Giovanelli R., Guariguata R., Schumann R., Wittinghofer A. 1980; A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Analytical Biochemistry 104:29–36
    [Google Scholar]
  14. Parmeggiani A., Swart G. W. M. . 1985; Mechanism of action of kirromycin-like antibiotics. Annual Reviews of Microbiology 39:557–577
    [Google Scholar]
  15. Pingoud A., Block W., Urbanke C., Wolf H. 1982; The antibiotics kirromycin and pulvomycin bind to different sites on the elongation factor Tu from Escherichia coli. European Journal of Biochemistry 123:261–265
    [Google Scholar]
  16. Ravel J. M., Shorey R. L. 1971; GTP-dependent binding of aminoacyl-tRNA to Escherichia coli ribosomes. Methods in Enzymology 20:306–316
    [Google Scholar]
  17. Selva E., Beretta G., Montanini M., Saddler G. S., Gastaldo L., Ferrari P., Lorenzetti R., Landini P., Ripamonti F., Goldstein B. P., Berti M., Montanaro L., Denaro M. 1991; Antibiotic GE 2270 A: a novel inhibitor of bacterial protein synthesis. Journal of Antibiotics 44:693–701
    [Google Scholar]
  18. Siegel J. L., Hurst S. F., Liberman E. S., Coleman S. E., Bleiweis A. S. 1981; Mutanolysin-induced spheroplasts of Streptococcus mutans are true protoplasts. Infection and Immunity 31:808–815
    [Google Scholar]
  19. Smith I., Paress P. 1978; Genetic and biochemical characterization of kirromycin resistance mutations in Bacillus subtilis. Journal of Bacteriology 135:1107–1117
    [Google Scholar]
  20. Traub P., Mizushima S., Lowry C. V., Nomura M. 1971; Reconstitution of ribosomes from subribosomal components. Methods in Enzymology 20:306–316
    [Google Scholar]
  21. van der Meide P. H., Borman T. H., Van Kimmenade A. M. A., van de Putte P., Bosch L. 1980; Elongation factor Tu isolated from Escherichia coli mutants altered in tufA and tufB. Proceedings of the National Academy of Sciences of the United States of America 77:3922–3926
    [Google Scholar]
  22. Woerner W., Wolf H. 1982; Kirromycin-resistant elongation factor Tu from wild-type of Lactobacillus brevis. FEBS Letters 146:322–326
    [Google Scholar]
  23. Woerner W., Gloeckner C., Mierzowski M., Wolf H. 1983; On heterogeneity of elongation factor Tu among eubacteria. FEMS Microbiology Letters 18:69–73
    [Google Scholar]
  24. Wolf H., Chinali G., Parmeggiani A. . 1974; Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proceedings of the National Academy of Sciences of the United States of America 71:4910–4914
    [Google Scholar]
  25. Wolf H., Chinali G., Parmeggiani A. 1977; Mechanism of inhibition of protein synthesis by kirromycin. European Journal of Biochemistry 75:67–75
    [Google Scholar]
  26. Wolf H., Assmann D., Fischer E. 1978; Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP and aminoacyl tRNA. Proceedings of the National Academy of Sciences of the United States of America 75:5324–5328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-4-769
Loading
/content/journal/micro/10.1099/00221287-139-4-769
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error