1887

Abstract

The integrating plasmid pCOA18, comprising pUC18 linked to a mutated coagulase () gene from , and constructed by substituting sequences with a tetracycline (Tc)-resistance marker (∆::Tc), was transformed into RN4220, where it underwent recombination with the chromosomal locus. Allele-replacement mutants were recovered at a low frequency directly after transformation. The majority of transformants carried pCOA18 integrated in the chromosome by a single Campbell-type recombination event. The majority of integrants contained tandem repeats of pCOA18 and expressed high levels of resistance to Tc (> 30 μg ml) compared to the single-copy integrants and allele-replacement mutants (15 μg ml). Transduction of a single-copy integrant to a Coa recipient allowed the cointegrant to be resolved and allele-replacement recombinants to be selected. In addition, growth of a single-copy integrant on high concentrations of Tc (> 30 μg ml) selected for amplified derivatives at a frequency of 10. It was estimated that up to 19 copies of pCOA18 could occur in a tandem array in the chromosome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-4-695
1993-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/4/mic-139-4-695.html?itemId=/content/journal/micro/10.1099/00221287-139-4-695&mimeType=html&fmt=ahah

References

  1. Anderson J. C., Adlam C., Knights J. M. 1982; The effect of staphylocoagulase in the mammary gland of the mouse. British Journal of Experimental Pathology 63:336–340
    [Google Scholar]
  2. Anderson R. P., Roth J. R. 1977; Tandem genetic duplication in phage and bacteria. Annual Review of Genetics 31:473–505
    [Google Scholar]
  3. Asheshov E. H. 1966; Loss of antibiotic resistance in Staphylococcus aureus resulting from growth at high temperatures. Journal of General Microbiology 42:403–410
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Seidman J. G., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley;
    [Google Scholar]
  5. Duthie E. S., Lorenz L. L. 1952; Staphylococcal coagulase: mode of action and antigenicity. Journal of General Microbiology 6:95–107
    [Google Scholar]
  6. Finlay B. B. 1992; Genetic approaches to understanding pathogenesis of complex bacterial pathogens. Symposia of the Society for General Microbiology 49:33–45
    [Google Scholar]
  7. Foster T. J. 1992; The use of mutants for defining the role of virulence factors in vivo. Symposia of the Society for General Microbiology 49:173–192
    [Google Scholar]
  8. Foster T. J., McDevitt D. 1992; Genetic analysis of Staphylococcus aureus virulence. In Molecular Pathogenesis of Surgical Infections Wadstrom T., Holder I., Kronvall J. Edited by Epidemiological and Molecular Aspects on Cholera London: Springer;
    [Google Scholar]
  9. Jones J. M., Yost S. C., Pattee P. A. 1987; Transfer of the conjugal tetracycline resistance transposon Tn916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococcal chromosome. Journal of Bacteriology 169:2121–2131
    [Google Scholar]
  10. Kreiswirth B. N., Lofdahl M. S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature; London: 305709–712
    [Google Scholar]
  11. McDevitt D., Vaudaux P., Foster T. J. 1992; Genetic evidence that bound coagulase of Staphylococcus aureus is not clumping factor. Infection and Immunity 60:1514–1523
    [Google Scholar]
  12. Matthew P. R., Stewart P. R. 1988; Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. Journal of General Microbiology 134:1455–1464
    [Google Scholar]
  13. Mekalanos J. J. 1983; Duplication and amplification of the toxin genes from Vibrio cholerae. . Cell 35:253–263
    [Google Scholar]
  14. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. O’Reilly M., De Azavedo J. C. S., Kennedy S., Foster T. J. 1986; Inactivation of the α-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on expression of its haemolysins. Microbial Pathogenesis 1:125–138
    [Google Scholar]
  16. Oskouian B., Stewart G. C. 1990; Repression and catabolite repression of the lactose operon of Staphylococcus aureus. Journal of Bacteriology 172:3804–3812
    [Google Scholar]
  17. Patel A. H., Nowlan P., Weavers E. D., Foster T. J. 1987; Virulence of protein A-deficient mutants of Staphylococcus aureus isolated by allele-replacement. Infection and Immunity 55:3103–3110
    [Google Scholar]
  18. Pattee P. A. 1981; Distribution of Tn551 insertion sites responsible for auxotrophy on the Staphylococcus aureus chromosome. Journal of Bacteriology 145:479–488
    [Google Scholar]
  19. Phonimdaeng P., O’Reilly M., O’Toole P. W., Foster T. J. 1988; Molecular cloning and expression of the coagulase gene of Staphylococcus aureus 8325-4. Journal of General Microbiology 134:75–83
    [Google Scholar]
  20. Phonimdaeng P., O’Reilly M., Nowlan P., Bramley A. J., Foster T. J. 1990; The coagulase of Staphylococcus aureus Sequence analysis and virulence of site-specific coagulase-deficient mutants. Molecular Microbiology 4:393–404
    [Google Scholar]
  21. Rigby P. W. J., Diekmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. 1988; AZAP: a bacteriophage expression vector with in vivo expression properties. Nucleic Acids Research 16:7583–7587
    [Google Scholar]
  24. Sloane R., De Azevado J. C. S., Arbuthnott J. P., Hartigan P. J., Kreiswirth B., Novick R. P., Foster T. J. 1991; A toxic shock syndrome toxin mutant of Staphylococcus aureus isolated by allelic-replacement lacks virulence in a rabbit uterine model. FEMS Microbiology Letters 78:239–244
    [Google Scholar]
  25. Southern E. M. 1975; Detection of specific sequences amoung DNA fragments seperated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  26. Summers D. K., Sherratt D. T. 1984; Multimerization of high copy number plasmids causes instability: ColEl encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103
    [Google Scholar]
  27. Wilson C. R., Skinner S. E., Shaw W. V. 1981; Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureus: insertional inactivation of Cm resistance, mapping of restriction sites and construction of cloning vehicles. Plasmid 5:245–258
    [Google Scholar]
  28. Young M. 1983; The mechanisms of insertion of a segment of heterologous DNA into the chromosome of Bacillus subtilis. Journal of General Microbiology 129:1497–1512
    [Google Scholar]
  29. Young M. 1984; Gene amplification in Bacillus subtilis. Journal of General Microbiology 130:1613–1621
    [Google Scholar]
  30. Young M., Ehrlich S. D. 1988; Stabilily of reiterated sequences in the Bacillus subtilis chromosome. Journal of Bacteriology 171:2653–2656
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-4-695
Loading
/content/journal/micro/10.1099/00221287-139-4-695
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error