1887

Abstract

Summary: biovar strain KIM5s is consistently much more competitive than strain CE3 in nodulation of beans ( L.) in the laboratory and in the field. To identify genes that contribute to the competitiveness of KIM5s, we transferred a cosmid library containing KIM5s DNA into CE3 and applied the transconjugants to bean plants to allow the plants to enrich for those with enhanced nodulation competitiveness. The nodule isolates were then applied to plants for further enrichment. Of 75 isolates from nodules sampled after the two enrichments, 9 were more competitive than CE3. For example, when outnumbered in the inocula 40-fold by a reference strain, these nine strains typically occupied 15–40% of the nodules compared with 0–3% for CE3. However, when these strains were cured of the cosmids, they remained highly competitive, demonstrating that the enhanced competitiveness of the strains was not associated with the cosmids. We found no evidence for cosmid insertion into the chromosome or for cosmid-induced genetic changes in these cured strains. We found some evidence suggesting that their altered competitiveness was due to spontaneous genetic changes that did not involve the cosmids. Although these highly competitive variants remain genetically uncharacterized, they may provide insight into bacterial traits that contribute to, or detract from, successful nodulation competitiveness.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-3-529
1993-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/3/mic-139-3-529.html?itemId=/content/journal/micro/10.1099/00221287-139-3-529&mimeType=html&fmt=ahah

References

  1. Allen L. N., Hanson R. S. 1985; Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. Journal of Bacteriology 161:955–962
    [Google Scholar]
  2. Amarger N. 1981; Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biology and Biochemistry 13:475–480
    [Google Scholar]
  3. Ames P., Bergman K. 1981; Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. Journal of Bacteriology 148:728–729
    [Google Scholar]
  4. Anderson A. J., Habibzadegah-Tari P., Tepper C. S. 1988; Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Applied and Environmental Microbiology 54:375–380
    [Google Scholar]
  5. Araujo R. S., Handelsman J. 1990; Characteristics of exopolysaccharide-deficient mutants of Rhizobium spp. with altered nodulation competitiveness. In Nitrogen Fixation: Achievements and objectives p. 247 Gresshoff P. M., Roth L. E., Stacey G., Newton W. E. Edited by New York: Chapman and Hall;
    [Google Scholar]
  6. Araujo R. S., Maya-Flores J., Barnes-Mcconnell D., Yokoyama C., Dazzo F. B., Bliss F. A. 1986; Semienclosed tube cultures of bean plants (Phaseolus vulgaris L.) for enumeration of Rhizobium phaseoli by the most-probable-number technique. Applied and Environmental Microbiology 52:954–956
    [Google Scholar]
  7. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. eds 1987 Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  8. Beattie G. A. 1991 Quantitative and molecular analysis of nodulation competitiveness in Rhizobium leguminosarum biovar phaseoli PhD thesis University of Wisconsin-Madison;
    [Google Scholar]
  9. Beattie G. A., Handelsman J. 1989; A rapid method for the isolation and identification of Rhizobium from root nodules. Journal of Microbiological Methods 9:29–33
    [Google Scholar]
  10. Beattie G. A., Clayton M. K., Handelsman J. 1989; Quantitative comparison of the laboratory and field competitiveness of Rhizobium leguminosarum biovar phaseoli. Applied and Environmental Microbiology 55:2755–2761
    [Google Scholar]
  11. Bergersen F. J. 1961; The growth of Rhizobium in synthetic media. Australian Journal of Biological Science 14:349–360
    [Google Scholar]
  12. Bhagwat A. A., Keister D. L. 1990; Competition defective mutants of Bradyrhizobium japonicum. In Nitrogen Fixation: Achievements and Objectives p. 251 Gresshoff P. M., Roth L. E., Stacey G., Newton W. E. Edited by New York: Chapman and Hall;
    [Google Scholar]
  13. Bhagwat A. A., Keister D. L. 1992; Identification and cloning of Bradyrhizobium japonicum genes expressed strain selectively in soil and rhizosphere. Applied and Environmental Microbiology 58:1490–1495
    [Google Scholar]
  14. Birnboim H. C. 1983; A rapid alkaline extraction method for the isolation of plasmid DNA. Methods in Enzymology 100:243–255
    [Google Scholar]
  15. Brom S., García De Los Santos A., Girard M. L., Dávila G., Palacios R., Romero D. 1991; High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids. Journal of Bacteriology 173:1344–1346
    [Google Scholar]
  16. Bromfield E. S. P., Lewis D. M., Barran L. R. 1985; Cryptic plasmid and rifampicin resistance in Rhizobium meliloti influencing nodulation competitiveness. Journal of Bacteriology 164:410–413
    [Google Scholar]
  17. Caetano-Anollés G., Wall L. G., De Micheli A. T., Macchi E. M., Bauer W. D., Favelukes G. 1988; Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiology 86:1228–1235
    [Google Scholar]
  18. Clarke L., Carbon J. 1976; A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99
    [Google Scholar]
  19. Douglas C. J., Staneloni R. J., Rubin R. A., Nester E. W. 1985; Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. Journal of Bacteriology 161:850–860
    [Google Scholar]
  20. Dusha I., Kovalenko S., Banfalvi Z., Kondorosi A. 1987; Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. Journal of Bacteriology 169:1403–1409
    [Google Scholar]
  21. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences of the United States of America 76:1648–1652
    [Google Scholar]
  22. Gray J. X., Djordjevic M. A., Rolfe B. G. 1990; Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234: DNA sequences and resultant phenotypes. Journal of Bacteriology 172:193–203
    [Google Scholar]
  23. Grimm C., Panopoulos N. J. 1989; The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins. Journal of Bacteriology 171:5031–5038
    [Google Scholar]
  24. Haefele D. M., Lindow S. E. 1987; Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae. Applied and Environmental Microbiology 53:2528–2533
    [Google Scholar]
  25. Hahn M., Hennecke H. 1988; Cloning and mapping of a novel nodulation region from Bradyrhizobium japonicum by genetic complementation of a deletion mutant. Applied and Environmental Microbiology 54:55–61
    [Google Scholar]
  26. Hahn M., Studer D. 1986; Competitiveness of a nif Bradyrhizobium japonicum mutant against the wild-type strain. FEMS Microbiology Letters 33:143–148
    [Google Scholar]
  27. Handelsman J., Ugalde R. A., Brill W. J. 1984; Rhizobium meliloti competitiveness and the alfalfa agglutinin. Journal of Bacteriology 157:703–707
    [Google Scholar]
  28. Haugland R. A., Cantrell M. A., Beaty J. S., Hanus F. J., Russell S. A., Evans H. J. 1984; Characterization of Rhizobium japonicum hydrogen uptake genes. Journal of Bacteriology 159:1006–1012
    [Google Scholar]
  29. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  30. Hynes M. F. 1990; The role of plasmids in competition between strains of Rhizobium leguminosarum. In Nitrogen Fixation: Achievements and Objectives p. 262 Gresshoff P. M., Roth L. E., Stacey G., Newton W. E. Edited by New York: Chapman and Hall;
    [Google Scholar]
  31. Kahn M. L., Timblin C. R. 1984; Gene fusion vehicles for the analysis of gene expression in Rhizobium meliloti. Journal of Bacteriology 158:1070–1077
    [Google Scholar]
  32. Kondorosi A. 1989; Rhizobium-legume interaction: nodulation genes. In Plant-Microbe Interactions. Molecular and Genetic Perspectives 3 pp. 383–420 Kosuge T., Nester E. W. Edited by New York: McGraw-Hill;
    [Google Scholar]
  33. Lagares A, Caetano-Anollés G., Niehaus K., Lorenzen J., Ljunggren H. D., Pühler, Favelukes G. 1992; A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. Journal of Bacteriology 174:5941–5952
    [Google Scholar]
  34. Lambert G. R., Harker A. R., Cantrell M. A., Hanus F. J., Russell S. A., Haugland R. A., Evans H. J. 1987; Symbiotic expression of cosmid-bome Bradyrhizobium japonicum hydrogenase genes. Applied and Environmental Microbiology 53:422–428
    [Google Scholar]
  35. Lindgren P. B., Peet R. C., Panopoulos N. J. 1986; Gene cluster of Pseudomonas syringae pv. ‘phaseolicola’ controls pathogenicity of bean plants and hypersensitivity on nonhost plants. Journal of Bacteriology 168:512–522
    [Google Scholar]
  36. Liu R., Tran V. M., Schmidt E. L. 1989; Nodulating competitiveness of a nonmotile Tn7 mutant of Bradyrhizobium japonicum in nonsterile soil. Applied and Environmental Microbiology 55:1895–1900
    [Google Scholar]
  37. Long S. R., Buikema W. J., Ausubel F. M. 1982; Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod mutants. Nature; London: 298485–488
    [Google Scholar]
  38. Mártinez-Romero E., Rosenblueth M. 1990; Increased bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modified Rhizobium strains. Applied and Environmental Microbiology 56:2384–2388
    [Google Scholar]
  39. Mcloughlin T. J., Merlo A. O., Satola S. W., Johansen E. 1987; Isolation of competition-defective mutants of Rhizobium fredii. Journal of Bacteriology 169:410–413
    [Google Scholar]
  40. Mellor H. Y., Glenn A. R., Arwas R., Dilworth M. J. 1987; Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Archives of Microbiology 148:34–39
    [Google Scholar]
  41. Milner J. L., Araujo R. S., Handelsman J. 1992; Molecular and symbiotic characterization of exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. Molecular Microbiology 6:3137–3147
    [Google Scholar]
  42. Noel K. D., Sanchez A., Fernandez L., Leemans J., Cevallos M. A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. Journal of Bacteriology 158:148–155
    [Google Scholar]
  43. O’Connell K. P., Handelsman J. 1989; chvA locus may be involved in export of neutral cyclic β-1,2-linked d-glucan from Agrobacterium tumefaciens. Molecular Plant-Microbe Interactions 2:11–16
    [Google Scholar]
  44. Priefer U. B., Burkardt H. J., Klipp W., Pühler A. 1980; ISR1: an insertion element isolated from the soil bacterium Rhizobium lupini. Cold Spring Harbor Symposium on Quantitative Biology 45:87–91
    [Google Scholar]
  45. Romero D., Brom S., Mártinez-Salazar J., Girard M. L., Palacios R., Dávila G. 1991; Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. Journal of Bacteriology 173:2435–2441
    [Google Scholar]
  46. Ronald P. C., Staskawicz B. J. 1988; The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Molecular Plant-Microbe Interactions 1:191–198
    [Google Scholar]
  47. Ruvkun G. B., Long S. R., Meade H. M., Van Den Bos R. C., Ausubel F. M. 1982; ISRm1: a Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. Journal of Molecular and Applied Genetics 1:405–418
    [Google Scholar]
  48. Rynne F., Dilworth M. J., Glenn A. R. 1988; Effect of aromatic metabolism on the competitiveness and persistence of Rhizobium trifolii WU95. In Nitrogen Fixation: Hundred Years After p. 787 Bothe H., de Bruijn F. J., Newton N. E. Edited by New York: Gustav Fischer Verlag;
    [Google Scholar]
  49. Sanjuan J., Olivares J. 1991a; Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhance Rhizobium meliloti nodulation competitiveness on alfalfa. Molecular Plant-Microbe Interactions 4:365–369
    [Google Scholar]
  50. Sanjuan J., Olivares J. 1991b; NifA-NtrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Archives of Microbiology 155:543–548
    [Google Scholar]
  51. Sobral B. W. S., Honeycutt R. J., Atherly A. G., Mcclelland M. 1991; Electrophoretic separation of the three Rhizobium meliloti replicons. Journal of Bacteriology 173:5173–5180
    [Google Scholar]
  52. Somasegaran P., Hoben H. 1985 Methods in Legume-Rhizobium Technology University of Hawaii NifTAL Project; Paia, Hawaii: pp. 320–327
    [Google Scholar]
  53. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. Journal of Bacteriology 169:5789–5794
    [Google Scholar]
  54. Swanson J., Kearney B., Dahlbeck D., Staskawicz B. 1988; Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Molecular Plant-Microbe Interactions 1:5–9
    [Google Scholar]
  55. Trinick M. J., Hadobas P. A. 1989; Competition by Bradyrhizobium strains for nodulation of the nonlegume Parasponia andersonii. Applied and Environmental Microbiology 55:1242–1248
    [Google Scholar]
  56. Triplett E. W. 1988; Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proceedings of the National Academy of Sciences of the United States of America 853810–3814
    [Google Scholar]
  57. Triplett E. W. 1990; Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased competitiveness. Applied and Environmental Microbiology 56:98–103
    [Google Scholar]
  58. Triplett E. W., Barta T. M. 1987; Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness of Rhizobium leguminosarum bv. trifolii strain T24 on clover. Plant Physiology 85:335–342
    [Google Scholar]
  59. Ugalde R. A., Handelsman J., Brill W. J. 1986; Role of galactosyltransferase activity in phage sensitivity and nodulation competitiveness of Rhizobium meliloti. Journal of Bacteriology 166:148–154
    [Google Scholar]
  60. Urban J. 1988; Use of succinate-sensitive inoculants increases nodule number and seed yields in legumes. In Nitrogen Fixation: Hundred Years After p. 566 Bothe H., de Bruijn F. J., Newton N. E. Edited by New York: Gustav Fischer;
    [Google Scholar]
  61. Wacek T. J., Brill W. J. 1976; Simple, rapid assay for screening nitrogen-fixing ability in soybean. Crop Science 16:519–523
    [Google Scholar]
  62. Zdor R. E., Pueppke S. G. 1991; Nodulation competitiveness of Tn5-induced mutants of Rhizobium fredii USDA208 that are altered in motility and extracellular polysaccharide production. Canadian Journal of Microbiology 37:52–58
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-3-529
Loading
/content/journal/micro/10.1099/00221287-139-3-529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error