1887

Abstract

A genetic and biochemical analysis of chromosomal functions required for xanthan polysaccharide synthesis () was undertaken. Seven DNA regions were isolated after conjugation of chemically induced non-mucoid mutants with a genomic library of DNA. No overlapping segments between regions were detected, based on physical mapping, indicating the unlinked character of these regions. Clones complementing several different mutants belonging to the same region contained overlapping segments of chromosomal DNA. Complementation and biochemical analysis, and DNA mapping were used to identify and characterize and DNA regions. Mutants in these three regions were able to synthesize both lipid intermediates and xanthan gum when sugar nucleotides were provided as substrates. HPLC analysis of the intracellular sugar nucleotide content showed that the XpsIII group comprises two different classes of mutants: XpsIIIA, defective in UDP-glucose, UDP-glucuronic acid and GDP-mannose, and XpsIIIB, defective in GDP-mannose. XpsIV mutants were defective in UDP-glucose and UDP-glucuronic acid, and XpsVI mutants were defective only in UDP-glucuronic acid. Analysis of enzyme activities involved in the synthesis of UDP-glucose, GDP-mannose and UDP-glucuronic acid indicated that the region affects the activity of the phosphoglucomutase/phosphomannomutase enzyme, and the region affects the mannoisomerase/ phosphomannoisomerase activities. The mutations affect the activity of the UDPG-pyrophosphorylase enzyme, and the mutations affect the activity of the UDPG-dehydrogenase enzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-3-447
1993-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/3/mic-139-3-447.html?itemId=/content/journal/micro/10.1099/00221287-139-3-447&mimeType=html&fmt=ahah

References

  1. Baldessari A., Ielpi L., Dankert M. A. 1990; A novel galacturonide from Xanthomonas campestris. Journal of General Microbiology 136:1501–1508
    [Google Scholar]
  2. Barrere G. C., Barber C. E., Daniels M. J. 1986; Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris. International Journal of Biological Macromolecules 8:372–374
    [Google Scholar]
  3. Berry A., De Vault J. D., Roychoudhury S., Zielinski N. A., May T. B., Wynne E. C., Rothmel R. K., Fialho A. M., Hussein M., Krylov V., Chakrabarty A. M. 1988; Pseudomonas aeruginosa infection in cystic fibrosis: molecular approaches to a medical problem. Chimicaoggi13–19
    [Google Scholar]
  4. Betlach M. R., Capage M. A., Doherty D. H., Hassler R. A., Henderson N. M., Vanderslice R. W., Marrelli J. D., Ward M. B. 1987; Genetically engineered polymers: manipulation of xanthan biosynthesis. In Industrial Polysaccharides: genetic engineering, structure/property relations and applications pp. 35–50 Yalpani M. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  5. Betlach M. R., Doherty D., Hassler R., Henderson N., Vanderslice R. W. 1990; Characterization of Xanthomonas campestris mutants defective in sugar nucleotide biosynthesis. Abstracts of the Annual Meeting of the American Society for Microbiology 0-20 p. 267
    [Google Scholar]
  6. Couso R. O., Ielpi L., Garcia R. C., Dankert M. A. 1980; Synthesis of mannosyl cellobiose diphosphate prenol in Acetobacter xylinum. Archives of Biochemistry and Biophysics 204:434–443
    [Google Scholar]
  7. Couso R. O., Ielpi L., Garcia R. C., Dankert M. A. 1982; Biosynthesis of polysaccharides in Acetobacter xylinum. Sequential synthesis of a heptasaccharide diphosphate prenol. European Journal of Biochemistry 123:617–627
    [Google Scholar]
  8. De Crécy-Lagard V., Bouvet O. M. M., Lejeune P., Danchin A. 1991a; Identification of two fructose transport and phosphorylation pathways in X. campestris pv. campestris. Molecular and General Genetics 227:465–472
    [Google Scholar]
  9. De Crécy-Lagard V., Bouvet O. M. M., Lejeune P., Danchin A. 1991b; Fructose catabolism in Xanthomonas campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. Journal of Biological Chemistry 266:18154–18161
    [Google Scholar]
  10. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X. -W., Finlay D. R., Guiney D., Helinski D. R. 1985; Plasmid related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153
    [Google Scholar]
  11. Gabriel O. 1987; Biosynthesis of sugar residues for glycogen, peptidoglycan, lipopolysaccharide, and related systems. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 504–511 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, D C: American Society for Microbiology.;
    [Google Scholar]
  12. Glever H. M., Styrvold I. K., Strøm A. R. 1988; Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. Journal of Bacteriology 170:2841–2849
    [Google Scholar]
  13. Harding N. E., Cleary J. M., Smith D. W., Michon J. J., Brusilow W. S. A., Zyskind J. W. 1982; Chromosomal replication origins (oriC) of Enterobacter aerogenes and Klebsiella pneumoniae are functional in Escherichia coli. Journal of Bacteriology 152:983–993
    [Google Scholar]
  14. Harding N. E., Cleary J. M., Cabañas D. K., Rosen I. G., Kang K. S. 1987; Genetic and physical analysis of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. Journal of Bacteriology 169:2854–2861
    [Google Scholar]
  15. Hötte B., Rath-Arnold I., Pühler A., Simon R. 1990; Cloning and analysis of a 35·73-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris. Journal of Bacteriology 172:2804–2807
    [Google Scholar]
  16. Ielpi L., Couso R. O., Dankert M. A. 1981a; Lipid-linked intermediates in the biosynthesis of xanthan gum. FEBS Letters 130:253–256
    [Google Scholar]
  17. Ielpi L., Couso R. O., Dankert M. A. 1981b; Pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid. Biochemical and Biophysical Research Communications 102:1400–1408
    [Google Scholar]
  18. Ielpi L., Couso R. O., Dankert M. A. 1983; Xanthan gum biosynthesis: acetylation accurs at the prenyl-phospho-sugar stage. Biochemistry International 6:323–333
    [Google Scholar]
  19. Jansson P. E., Keene L., Lindberg B. 1975; Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research 45:275–282
    [Google Scholar]
  20. Köplin R., Arnold W., Hötte B., Simon R., Wang G., Pühler A. 1992; Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. Journal of Bacteriology 174:191–199
    [Google Scholar]
  21. Marzocca M. P., Harding N. E., Petroni E. A., Cleary J. M., Ielpi L. 1991; Location and cloning of the ketal pyruvate transferase gene of Xanthomonas campestris. Journal of Bacteriology 173:7519–7524
    [Google Scholar]
  22. Palleroni N., Doudoroff M. 1956; Mannose isomerase of Pseudomonas saccharophila. Journal of Biological Chemistry 218:535–548
    [Google Scholar]
  23. Payne S. M., Ames B. N. 1982; A procedure for rapid extraction and high-pressure liquid chromatography separation of the nucleotides and other small molecules from bacterial cells. Analytical Biochemistry 123:151–161
    [Google Scholar]
  24. Ray W. J. Jr Peck E. J. Jr 1972; Phosphomutases. In The Enzymes, 3rd edn. VI pp. 407–477 Boyer P. D. Edited by New York: Academic Press.;
    [Google Scholar]
  25. Souw P., Demain A. L. 1979; Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459. Applied and Environmental Microbiology 37:1186–1192
    [Google Scholar]
  26. Takasaki Y., Tanabe O. 1964; Studies on the isomerization of sugars by bacteria. VII. Constitutive production of mannose isomerase by Xanthomonas species. Agricultural and Biological Chemistry 28:601–604
    [Google Scholar]
  27. Thorne L., Tansey L., Pollock T. J. 1987; Clustering of mutations blocking synthesis of xanthan gum by Xanthomonas campestris. Journal of Bacteriology 169:3593–3600
    [Google Scholar]
  28. Trevelyan W. E., Procter D. P., Harrison J. S. 1950; Detection of sugar on paper chromatograms. Nature; London: 166444–445
    [Google Scholar]
  29. Turnquist R. L., Gaurth Hansen R. 1973; Uridine diphosphoryl glucose pyrophosphorylase. In The Enzymes, 3rd edn. VIII pp. 51–71 Boyer P. D. Edited by New York: Academic Press.;
    [Google Scholar]
  30. Vanderslice R. W., Doherty D. H., Capage M. A., Betlach M. R., Hassler R. A., Henderson N. M., Ryan-Graniero J., Tecklenburg M. 1989; Genetic engineering of polysaccharide structure in Xanthomonas campestris. In Biomedical and Biotechnological Advances in Industrial Polysaccharides pp. 145–156 Crescenzi V., Dea I. C. M., Paoletti S, Stivala S. S., Sutherland I. W. Edited by New York: Gordon & Breach.;
    [Google Scholar]
  31. Zielinski N. A., Chakrabarty A. M., Berry A. 1991; Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. Journal of Biological Chemistry 266:9754–9763
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-3-447
Loading
/content/journal/micro/10.1099/00221287-139-3-447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error