1887

Abstract

The region contains genes essential for growth on glycerol or glycerol 3-phosphate (G3P). The nucleotide sequence of encoding a regulatory protein and the previously unidentified encoding the glycerol uptake facilitator was determined. is located immediately upstream of and the two genes were shown to constitute one operon which is transcribed separately from . A A-type promoter and the transcriptional start point for were identified. In the 5′ untranslated leader sequence (UTL) of mRNA a conserved inverted repeat is found. The repeat is believed to be involved in the control of expression of by termination/antitermination of transcription, a control mechanism previously suggested for the regulation of encoding G3P dehydrogenase. Expression of and requires the inducer G3P and the gene product. A 2·9 kb chromosomal DNA fragment containing the open reading frame was cloned to give plasmid pLUM7. pLUM7 contains a functional gene as shown by its ability to complement various mutants. Immediately upstream of an open reading frame is found (ORF1). Disrupting ORF1 by plasmid integration in the chromosome does not affect the ability to grow on glycerol as sole carbon and energy source. With the present report all genes located at 75° on the chromosomal map have been identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-2-349
1993-02-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/2/mic-139-2-349.html?itemId=/content/journal/micro/10.1099/00221287-139-2-349&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81:741–746
    [Google Scholar]
  2. Arwert F., Venema G. 1973; Transformation in Bacillus subtilis. Molecular and General Genetics 123:185–198
    [Google Scholar]
  3. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. 1987; Minipreps of plasmid DNA. In Current Protocols in Molecular Biology1.6.4.–1.6.5 New York: John Wiley & Sons;
    [Google Scholar]
  4. Ayer D.E., Dynan W.S. 1988; Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Molecular and Cellular Biology 8:2021–2033
    [Google Scholar]
  5. Bairoch A. 1991; PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Research 19:2241–2245
    [Google Scholar]
  6. Bartsch K., Von John-Marteville A., Schulz A. 1990; Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD) . Journal of Bacteriology 172:7035–7042
    [Google Scholar]
  7. Bayly R.C., Dagley S., Gibson D.T. 1966; The metabolism of cresols by species of Pseudomonas.. Biochemical Journal 101:293–301
    [Google Scholar]
  8. Degols G. 1987; Functional analysis of the regulatory region adjacent to the cargB gene of Saccharomyces cerevisiae. Nucleotide sequence, gene fusion experiments and cis-dominant regulatory mutation analysis. European Journal of Biochemistry 169:193–200
    [Google Scholar]
  9. Devereux J., Heberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Fridén H., Hederstedt L., Rutberg L. 1987; Deletion of the Bacillus subtilis sdh operon. FEMS Microbiology Letters 41:203–206
    [Google Scholar]
  11. Gloeckler R., Ohsawa I., Speck D., Ledoux C., Bernard S., Zinsius M., Villeval D., Kisou T., Kamogawa K., Lemoine Y. 1990; Cloning and characterization of the Bacillus sphaericusgenes controlling the bioconversion of pimelate into dethiobiotin. Gene 87:63–70
    [Google Scholar]
  12. Gryczan T.J., Contente S., Dubnau D. 1978; Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. Journal of Bacteriology 134:318–329
    [Google Scholar]
  13. Haima P., Bron S., Venema G. 1987; The effect of restriction on shotgun cloning in Bacillus subtilis Marburg. Molecular and General Genetics 209:335–342
    [Google Scholar]
  14. Holmberg C., Rutberg B. 1991; Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Molecular Microbiology 5:2891–2900
    [Google Scholar]
  15. Holmberg C., Rutberg L. 1992; An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Molecular Microbiology 6:2931–2938
    [Google Scholar]
  16. Holmberg C., Beijer L., Rutberg B., Rutberg L. 1990; Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD) . Journal of General Microbiology 136:2367–2375
    [Google Scholar]
  17. Ish-Horowicz D., Burke J.F. 1981; Rapid and efficient cosmid cloning. Nucleic Acids Research 9:2989–2998
    [Google Scholar]
  18. Kyte J., Doolittle R.F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  19. Lin E.C.C., Koch J.P., Chused T.M., Jorgensen S.E. 1962; Utilization of l-α-glycerophosphate by Escherichia coli without hydrolysis. Proceedings of the National Academy of Sciences of the United States of America 48:2145–2150
    [Google Scholar]
  20. Lindgren V. 1978; Mapping of a genetic locus that affects glycerol-3-phosphate transport in Bacillus subtilis. Journal of Bacteriology 133:667–670
    [Google Scholar]
  21. Lindgren V., Rutberg L. 1974; Glycerol metabolism in Bacillus subtilis: gene-enzyme relationships. Journal of Bacteriology 119:431–442
    [Google Scholar]
  22. Lindgren V., Rutberg L. 1976; Genetic control of the glp system in Bacillus subtilis. Journal of Bacteriology 127:1047–1057
    [Google Scholar]
  23. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  24. Niaudet B., Goze A., Erlich S.D. 1982; Insertional mutagenesis in Bacillus subtilis-. mechanism and use in gene cloning. Gene 19:277–284
    [Google Scholar]
  25. Otsuka A.J., Buoncristiani M.R., Howard P.K., Flamm J., Johnson C., Yamamoto R., Uchida K., Cook C., Ruppert J., Matsuzaki J. 1988; The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the biooperon. Journal of Biological Chemistry 263:19577–19585
    [Google Scholar]
  26. Pao G.M., Wu L.-F., Johnson K.D., HÖFte H., Chrispeels M.J., Sweet G., Sandal N.N., Saier M.H.Jr 1991; Evolution of the MIP family of integral membrane transport proteins. Molecular Microbiology 5:33–37
    [Google Scholar]
  27. Piggot P.J., Amjad M., Wu J.-J., Sandoval H., Castro J. 1990; Genetic and physical maps of Bacillus subtilis 168. In Molecular Biological Methods for Bacillus pp. 493–543 Harwood C.R., Cutting S.M. Edited by Chichester: John Wiley & Sons.;
    [Google Scholar]
  28. Reizer J., Saier M.H., Deutscher J., Grenier F., Thompson J., Hengstenberg W. 1988; The phosphoenolpyruvate: sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism and regulation. CRC Critical Reviews in Microbiology 15:297–338
    [Google Scholar]
  29. Resnekov O., Rutberg L., Von Gabain A. 1990; Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 87:8355–8359
    [Google Scholar]
  30. Sala-Trepat J.M., Evans W.C. 1971; The meta cleavage of catechol by Azotobacter species. European Journal of Biochemistry 20:400–413
    [Google Scholar]
  31. Sambrook J., Fritsch E.F., Maniatis T. 1989; Preparation of radiolabeled DNA and RNA probes. In Molecular Cloning: A Laboratory Manual, 2nd edn.10.60–10.61 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  33. Sweet G., Gandor C., Voegele R., Wittekindt N., Beuerle J., Truniger V., Lin E.C.C., Boos W. 1990; Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpFproduct. Journal of Bacteriology 172:424–430
    [Google Scholar]
  34. Weickert M.J., Chambliss G.H. 1990; Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 87:6238–6242
    [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  36. Zukowski M.M., Miller L. 1986; Hyperproduction of an intracellular heterologous protein in a sacUh mutant of Bacillus subtilis. Gene 46:247–255
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-2-349
Loading
/content/journal/micro/10.1099/00221287-139-2-349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error