1887

Abstract

A nucleotide sequence encoding an exo--(1,3)-glucanase was cloned from a library of genomic DNA of ATCC 10261. The sequenced gene encodes a protein of 438 amino acid residues. The amino terminal and an internal peptide sequence of the enzyme matched with deduced sequences within the cloned gene. Analysis of the sequence indicated that the nascent protein is processed during secretion by the signal peptidase and a Kex2-like proteinase, yielding a predicted mature enzyme of 400 residues. There is 58% identity and 85% similarity between the amino acid sequences of this exoglucanase and the homologous enzyme of . An antiserum to the purified exoglucanase cross-reacted with the exoglucanase and a similar protein secreted by other strains and species. There are no sites for -linked glycosylation in the sequence and this is consistent with the carbohydrate content of the secreted enzyme. Putative upstream promoter elements are associated with the gene. Southern analysis of the gene indicated that it was present at one copy per genome and that the diploid genome of ATCC 10261 is heterozygous at this locus for a /II RFLP. A 2.5 kb mRNA transcript was detected by Northern analysis and gene expression, as monitored by Northern and Western blots, reflected the growth rates of the cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-2-325
1993-02-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/2/mic-139-2-325.html?itemId=/content/journal/micro/10.1099/00221287-139-2-325&mimeType=html&fmt=ahah

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Smith J.A., Seidman J.G., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley Sons;
    [Google Scholar]
  2. Baird S.D., Hefford M.A., Johnson D.A., Sung W.L., Yaguchi M., Seligy V.L. 1990; The GLU residue in the conserved ASN-GLU-PRO sequence of two highly divergent endo-β-1,4-glucanases is essential for enzymatic activity. Biochemical and Biophysical Research Communications 169:1035–1039
    [Google Scholar]
  3. Bankier A.T., Weston K.M., Barrell B.G. 1987; Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods in Enzymology 155:51–93
    [Google Scholar]
  4. Bennetzen J.L., Hall B.D. 1982; Codon selection in yeast. Journal of Biological Chemistry 257:3026–3031
    [Google Scholar]
  5. Benoist C., O’Hare K., Breathnach R., Chambon P. 1980; The ovalbumin gene -sequence of putative control regions. Nucleic Acids Research 8:127–142
    [Google Scholar]
  6. Brown T.A. 1991 Molecular Biology Labfax. Oxford: βios Scientific Publishers Blackwell Scientific Publications;
    [Google Scholar]
  7. Bruss M.L., Black A.L. 1978; Enzymatic microdetermination of glycogen. Analytical Biochemistry 84:309–312
    [Google Scholar]
  8. Cenamor R., Molina M., Galdona J., Sanchez M., Nombela C. 1987; Production and secretion ofSaccharomyces cerevisiae β-glucanases: differences between protoplast and periplasmic enzymes. Journal of General Microbiology 133:619–628
    [Google Scholar]
  9. Cryer D.R., Eccleshall R., Marmur J. 1975; Isolation of yeast DNA. Methods in Cell Biology 12:39–44
    [Google Scholar]
  10. Cutfield S., Brooke G., Sullivan P., Cutfield J. 1992; Crystallization of the exo( 1,3)-β-glucanase fromCandida albicans. Journal of Molecular Biology 225:217–218
    [Google Scholar]
  11. Davis B.J. 1964; Disc electrophoresis II: Method and application to human serum proteins. Annals of the New York Academy of Sciences 121:404–427
    [Google Scholar]
  12. Dobson M.J., Tuite M.F., Roberts N.A., Kingsman A.J., Kingsman S.M. 1982; Conservation of high efficiency promoter sequences inSaccharomyces cerevisiae. Nucleic Acids Research 10:2625–2637
    [Google Scholar]
  13. Dunn S.D. 1986; Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on western blots by monoclonal antibodies. Analytical Biochemistry 157:144–153
    [Google Scholar]
  14. Feinberg A.P., Vogelstein B. 1984; Addendum: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 137:266–267
    [Google Scholar]
  15. Fleet G.H. 1991; Cell walls. In The Yeasts 2nd edition 4 pp. 199–277 Rose A.H., Harrison J.S. Edited by London: Academic Press;
    [Google Scholar]
  16. Fuller R.S., Brake A.J., Thorner J. 1989; Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 246:482–485
    [Google Scholar]
  17. Gabriel O., Wang S. 1969; Determination of enzymatic activity in polyacrylamide gels. Analytical Biochemistry 27:545–554
    [Google Scholar]
  18. Grossberger D. 1987; Minipreps of DNA from bacteriophage lambda. Nucleic Acids Research 15:6737
    [Google Scholar]
  19. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  20. Hien N.H., Fleet G.H. 1983; Separation and characterisation of six (1,3)-β-glucanases fromSaccharomyces cerevisiae. Journal of Bacteriology 156:1204–1213
    [Google Scholar]
  21. Hube B., Turver C.J., Odds F.C., Eiffert H., Boulnois G.J., Kochel H., Ruchel R. 1991; Sequence of theCandida albicansgene encoding the secretory aspartate proteinase. Journal of Medical and Veterinary Mycology 29:1–4
    [Google Scholar]
  22. Innis M.A., Holland M.J., McCabe P.C., Cole G.E., Wittman V., Tal R., Watt K.W.K., Gelfand D.H., Holland J.P., Meade J.H. 1985; Expression, glycosylation, and secretion of anAspergillus glucoamylase by Saccharomyces cerevisiae.. Science 228:21–25
    [Google Scholar]
  23. Itoh T., Ohtsuki I., Yamashita I., Fukui S. 1987; Nucleotide sequence of the glucoamylase gene GLU1 in the yeastSaccharomycopsis fibuligera. Journal of Bacteriology 169:4171–4176
    [Google Scholar]
  24. Kelly R., Miller S.M., Kurtz M.B., Kirsch D.R. 1987; Directed mutagenesis inCandida albicans: one-step gene disruption to isolateURA3 mutants. Molecular and Cellular Biology 7:199–207
    [Google Scholar]
  25. Laemmli U.K., Favre M. 1973; Maturation of the head of bacteriophage T4. Journal of Molecular Biology 80:575–599
    [Google Scholar]
  26. Luna-Arias J.P., Andaluz E., Ridruejo J.C., Olivero I., Larriba G. 1991; The major exoglucanase from Candida albicans:a non-glycosylated secretory monomer related to its counterpart fromSaccharomyces cerevisiae. Yeast 7:833–841
    [Google Scholar]
  27. Matoba S., Fukayama J., Wing R.A., Ogrydziak D.M. 1988; Intracellular precursors and secretion of alkaline extracellular protease ofYarrowia lipolytica. Molecular and Cellular Biology 8:4904–4916
    [Google Scholar]
  28. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry 262:10035–10038
    [Google Scholar]
  29. Molina M., Cenamor R., Nombela C. 1987; Exo-1,3-β-glucanase activity inCandida albicans: effect of the yeast to mycelium transition. Journal of General Microbiology 133:609–617
    [Google Scholar]
  30. Molina M., Cenamor R., Sanchez M., Nombela C. 1989; Purification and some properties ofCandida albicans exo-1,3-β glucanase. Journal of General Microbiology 135:309–314
    [Google Scholar]
  31. Nombela C., Molina M., Cenamor R., Sanchez M. 1988; Yeast β-glucanases: a complex system of secreted enzymes. Microbiological Sciences 5:328–332
    [Google Scholar]
  32. Pearson W.R., Lipman D.J. 1988; Improved tools for biological sequence comparisons. Proceedings of the National Academy of Sciences of the United States of America 85:2444–2448
    [Google Scholar]
  33. Peterson G.L. 1977; A simplification of the protein assay method of Lowryet al. which is more generally applicable. Analytical Biochemistry 87:386–396
    [Google Scholar]
  34. Ram S.P., Hynes K.H., Romana L.K., Shepherd M.G., Sullivan P.A. 1988; The β-glucanases and β-glucosidase ofCandida albicans.. Biochemistry(Life Science Advances) 7:379–383
    [Google Scholar]
  35. Ramirez M., Hernandez L.M., Larriba G. 1989; A similar protein portion for two exoglucanases secreted bySaccharomyces cerevisiae.. Archives of Microbiology 151:391–398
    [Google Scholar]
  36. Ramirez M., Munoz M.D., Basco R.D., Gimenez-Gallego G., Hernandez L.M., Larriba G. 1990; Two glycosylation patterns for a single protein (exoglucanase) inSaccharomyces cerevisiae. FEMS Microbiology Letters 71:43–48
    [Google Scholar]
  37. Del Rey F., Garcia-Acha I., Nombela C. 1979; The regulation of β-glucanase synthesis in fungi and yeast. Journal of General Microbiology 110:83–89
    [Google Scholar]
  38. Del Rey F., Villa T.G., Santos T., Garcia-Acha I., Nombela C. 1982; Purification and partial characterisation of a new, sporulation specific, exo-β-glucanase fromSaccharomyces cerevisiae. Biochemical and Biophysical Research Communications 105:1347–1353
    [Google Scholar]
  39. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring HarborLaboratory.;
    [Google Scholar]
  40. Schmitt M.E., Brown T.A., Trumpower B.L. 1990; A rapid and simple method for preparation of RNA fromSaccharomyces cerevisiae. Nucleic Acids Research 18:3091–3092
    [Google Scholar]
  41. Staden R., Mclachlan A.D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–174
    [Google Scholar]
  42. Stockwell P.A. 1985; vtutin: A full screen gel management editor. Computer Applications in the Biosciences 1:253–259
    [Google Scholar]
  43. Stockwell P.A., Petersen G.B. 1987; homed: A homologous sequence editor. Computer Applications in the Biosciences 3:37–43
    [Google Scholar]
  44. Trimble R.B., Maley F. 1984; Optimising hydrolysis of A-linked high mannose oligosaccharides by endo-β-N-acetylglucosaminidase H. Analytical Biochemistry 141:515–522
    [Google Scholar]
  45. Vasquez De Aldana C.R., Correa J., San Segundo P., Bueno A., Nebreda A.R., Mendez E., Del Rey F. 1991; Nucleotide sequence of the exo-1,3-β-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97:173–182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-2-325
Loading
/content/journal/micro/10.1099/00221287-139-2-325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error