1887

Abstract

BD413 develops competence for natural transformation immediately after the start of the exponential growth-phase and remains competent up to a few hours into the stationary phase, after which competence gradually declines. The transformation frequencies obtained strongly depend on the kind of transforming DNA and the incubation time with DNA. Up to 25% of the cells in a culture can be transformed. DNA uptake in does not display sequence specificity, is Mg-, Mn- or Ca-dependent and is uncoupler sensitive. The transforming DNA enters the cells in single-stranded form. These properties constitute a unique combination, not previously observed in other bacteria, and make ideally suited for detailed studies of the bioenergetics of DNA translocation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-2-295
1993-02-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/2/mic-139-2-295.html?itemId=/content/journal/micro/10.1099/00221287-139-2-295&mimeType=html&fmt=ahah

References

  1. Ahlquist E.F., Fewson C.A., Ritchie D.A., Podmore J., Rowell V. 1980; Competence for genetic transformation in Acinetobacter calcoaceticus NCIB8250. FEMS Microbiology Letters 7:107–109
    [Google Scholar]
  2. Avery O.T., McLeod C.M., Mccarthy M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Journal of Experimental Medicine 79:137–158
    [Google Scholar]
  3. Canosi U., Morelli G., Trautner T. A. 1978; The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Molecular and General Genetics 166:259–267
    [Google Scholar]
  4. Davidoff-Abelson R., Dubnau D. 1973; Kinetic analysis of the products of donor deoxyribonucleate in transformed cells of Bacillus subtilis. Journal of Bacteriology 116:154–162
    [Google Scholar]
  5. Doran J.L., Bingle W.H., Roy K.L., Hiratsuka K., Page W.J. 1987; Plasmid transformation of Azotobacter vinelandii OP. Journal of General Microbiology 133:2059–2072
    [Google Scholar]
  6. Dubnau D. 1991; Genetic competence in Bacillus subtilis. Microbiological Reviews 55:395–424
    [Google Scholar]
  7. Goodgal S.H. 1982; DNA uptake in Haemophilus transformation. Annual Review of Genetics 16:169–192
    [Google Scholar]
  8. Goodman S.D., Scocca J.J. 1991; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proceedings of the National Academy of Sciences of the United States of America 856982–6986
    [Google Scholar]
  9. Grinius L. 1987; Bioenergetics of nucleic acid transport. In Energy Transduction and Gene Transfer in Chemotrophic Bacteria chapter 6 pp. 161–215 Chur, Switzerland:: Harwood Academic Publishers;
    [Google Scholar]
  10. Hunger M., Schmucker R., Kishan V., Hillen W. 1990; Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87:45–51
    [Google Scholar]
  11. Ish-Horowicz D., Burke F.J. 1981; Rapid and efficient cosmid cloning. Nucleic Acids Research 9:2989–2999
    [Google Scholar]
  12. Juni E. 1972; Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. Journal of Bacteriology 112:917–931
    [Google Scholar]
  13. Juni E. 1974; Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Applied Microbiology 27:16–24
    [Google Scholar]
  14. Juni E. 1978; Genetics and physiology of Acinetobacter. Annual Review of Microbiology 32:349–371
    [Google Scholar]
  15. Juni E., Janik A. 1969; Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). Journal of Bacteriology 98:281288
    [Google Scholar]
  16. Kahn M.E., Maul S.H., Goodgal S.H. 1982; Possible mechanisms for donor DNA binding and transport in Haemophilus. Proceedings of the National Academy of Sciences of the United States of America 796370–6374
    [Google Scholar]
  17. Kahn M.E., Barany F., Smith H.O. 1983; Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proceedings of the National Academy of Sciences of the United States of America 806927–6931
    [Google Scholar]
  18. Lacks S. 1962; Molecular fate of DNA in genetic transformation of Pneumococcus. Journal of Molecular Biology 5:119–131
    [Google Scholar]
  19. Lacks S. 1977; Binding and entry of DNA in bacterial transformation. In Microbial Interactions pp. 179–232 Edited by J.L.Reissig; London: Chapman Hall:
    [Google Scholar]
  20. Lacks S., Neuberger M. 1975; Membrane location of a deoxyribonuclease implicated in genetic transformation of Diplo-coccus pneumoniae. Journal of Bacteriology 124:1321–1329
    [Google Scholar]
  21. Lacks S., Greenberg B., Neuberger M. 1975; Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. Journal of Bacteriology 123:222–232
    [Google Scholar]
  22. Lorenz M.G., Reipschläger K., Wackernagel W. 1992; Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Archives of Microbiology 157:355–360
    [Google Scholar]
  23. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular cloning: A Laboratory Manual. Cold Spring Harbor: NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  24. Morrison D.A., Guild W.R. 1973; Breakage prior to entry of donor DNA in pneumococcus transformation. Biochimica et Biophysica Acta 299:545–556
    [Google Scholar]
  25. Mulder J.A., Venema G. 1982a; Isolation and partial characterization of Bacillus subtilis mutants impaired in DNA entry. Journal of Bacteriology 150:260–268
    [Google Scholar]
  26. Mulder J.A., Venema G. 1982b; Transformation-deficient mutants of Bacillus subtilis impaired in competence-specific nuclease activities. Journal of Bacteriology 152:166–174
    [Google Scholar]
  27. Noteborn M., Venema G., Kooistra J. 1981; Effect of ethylenediamine-tetraacetic acid on deoxyribonucleic acid entry and recombination in transformation of a wild-type strain and a rec-one mutant of Haemophilus influenzae. Journal of Bacteriology 145:1189–1195
    [Google Scholar]
  28. Page W.J., Von Tigerstrom M. 1979; Optimal conditions for transformation of Azotobacter vinelandii. Journal of Bacteriology 139:1058–1061
    [Google Scholar]
  29. Palmen R., Vosman B., Kok R., Van Der Zee J.R., Hellingwerf K.J. 1992; Characterization of transformation deficient mutants of Acinetobacter calcoaceticus. Molecular Microbiology 6:1747–1754
    [Google Scholar]
  30. Piechowska M., Fox M.S. 1971; Fate of transforming deoxyribonucleate in Bacillus subtilis. Journal of Bacteriology 108:680–689
    [Google Scholar]
  31. Rudolph C.F., Schmidt B.J., Saunders C.W. 1986; Transformation of Bacillus subtilis by single-stranded plasmid DNA. Journal of Bacteriology 165:1015–1018
    [Google Scholar]
  32. Sawula R.V., Crawford I.P. 1972; Mapping of the tryptophan genes of Acinetobacter calcoaceticus by transformation. Journal of Bacteriology 112:797–805
    [Google Scholar]
  33. Seto H., Tomasz A. 1976; Calcium-requiring step in the uptake of deoxyribonucleic acid molecules through the surface of competent pneumococci. Journal of Bacteriology 126:1113–1118
    [Google Scholar]
  34. Smith H., Wiersma K., Venema G., Bron S. 1985; Transformation in Bacillus subtilis: further characterization of a 75,000-Dalton protein complex involved in binding and entry of donor DNA. Journal of Bacteriology 164:201–206
    [Google Scholar]
  35. Stachel S.E., Timmerman B., Zambryski P. 1986; Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature; London: 322706–712
    [Google Scholar]
  36. Stewart G.J., Carlson C.A. 1986; The biology of natural transformation. Annual Review of Microbiology 40:211–235
    [Google Scholar]
  37. De Vos W., Venema G., Canosi U., Trautner T.A. 1981; Plasmid transformation in Bacillus subtilis: fate of plasmid DNA. Molecular and General Genetics 181:424–433
    [Google Scholar]
  38. Vosman B., Hellingwerf K.J. 1991; Molecular cloning and functional characterization of the recA analog from Pseudomonas stutzeri and construction of a P.stutzeri recA mutant. Antonie van Leeuwenhoek 59:115–123
    [Google Scholar]
  39. Vosman B., Kooistra J., Olijve J., Venema G. 1987; Cloning in Escherichia coli of the gene specifying the DNA-entry nuclease of Bacillus subtilis. Gene 52:175–183
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-2-295
Loading
/content/journal/micro/10.1099/00221287-139-2-295
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error