1887

Abstract

A 5·4 kb III fragment of subsp. was identified using a homologous probe generated by PCR and cloned in Upstream sequences were generated by inverse PCR. The two cloned fragments partially overlapped, and sequencing of 5915 bp revealed the presence of four open reading frames in the order encodes a 39 kDa protein of unknown function which shows considerable sequence homology with the Orf39 and Orfa proteins of and respectively. The downstream ORFs showed high homology to the and genes of other prokaryotes. The DnaK protein has a characteristic 24-amino-acid deletion exhibited by all the known DnaK proteins of Gram-positive species. In many bacteria the and genes are found as part of the same operon. The operon is unusual in that the gene is followed by a putative transcription terminator and a fourth large ORF which shares no homology with the genes of other bacteria but has a small degree of homology with various membrane proteins. Vegetative promoter sequences are found upstream of both and A 12 bp inverted repeat is found upstream of the putative promoter of and an 8 bp inverted repeat is found between this promoter and the initiation codon. These repeats are thought to be involved in regulation of the heat-shock genes. The DnaK homologue is induced approximately 3-fold on heat shock at 42 °C.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-3253
1993-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-3253.html?itemId=/content/journal/micro/10.1099/00221287-139-12-3253&mimeType=html&fmt=ahah

References

  1. Auffray Y., Gansel X., Thammavongs B., Boutibonnes P. 1992; Heat shock induced protein synthesis in L. lactis subsp.lactis. Current Microbiology 24:281–284
    [Google Scholar]
  2. Baird P.N., Hall L.M.C., Coates A.R.M. 1989; Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis. Journal of General Microbiology 135:931–939
    [Google Scholar]
  3. Bardwell J.C.A., Craig E.A. 1984; Major heat shock genes of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proceedings of the National Academy of Sciences of the United States of America 81:848–852
    [Google Scholar]
  4. Bardwell J.C.A., Tilly K., Craig E., King J., Zylicz M., Georgopoulos C. 1986; The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. Journal of Biological Chemistry 261:1782–1785
    [Google Scholar]
  5. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1519
    [Google Scholar]
  6. Blum P., Velligan M., Lin N., Abdul M. 1992; DnaK mediated alterations in human growth hormone protein inclusion bodies. Biotechnology 10:301–304
    [Google Scholar]
  7. Bolivar F., Rodrigues R.L., Greene P.J., Betlach M.C., Heyneker H.L., Boyer H.W., Crosa J.H., Falkow S. 1977; Construction and characterization of new cloning vehicles: a multi purpose cloning system. Gene 2:95–114
    [Google Scholar]
  8. Boutibonnes P., Tranchard C., Hartke A., Thammavongs B. 1992; Is thermotolerance correlated to heat-shock protein synthesis in L.lactis subsp.lactis?. International Journal of Food Microbiology 16:227–236
    [Google Scholar]
  9. Bradford M.M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  10. Casadaban M.J., Cohen S.N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. Journal of Molecular Biology 138:179–207
    [Google Scholar]
  11. Cellier M.F.M., Teyssier J., Laiutard J.P., Marti J., Sriwidada J. 1992; Cloning and characterization of the Brucella ovis heat shock protein DnaK functionally expressed in Escherichia coli. Journal of Bacteriology 174:8036–8042
    [Google Scholar]
  12. Chitnis P.R., Nelson N. 1991; Molecular cloning of genes encoding two chaperone proteins from the cyanobacteria Synechocystis sp.PCC6803. Journal of Biological Chemistry 266:58–65
    [Google Scholar]
  13. Cowing D.W., Bardwell J.C.A., Craig E.A., Woolford C., Hendrix R.W., Gross C.A. 1985; Consensus sequence for Escherichia coli heat shock gene promoters. Proceedings of the National Academy of Sciences of the United States of America 822679–2683
    [Google Scholar]
  14. Dean D.O., James R. 1991; Identification of a gene, closely linked to dnaK, which is required for high-temperature growth of Escherichia coli. Journal of General Microbiology 137:1271–1277
    [Google Scholar]
  15. Fischetti V.A., Pancholi V., Schneewind O. 1991; Common characteristics of the surface proteins from Gram positive cocci. In Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci pp. 290–294 Dunny G.M., Cleary P.P., Mckay L.L. Edited by Washington DC: American Society for Microbiology;
    [Google Scholar]
  16. Freier S.M., Kierek R., Jaeger J.A., Sugimoto N., Caruthers M.H., Neilson T., Turner D.H. 1986; Improved free-energy parameters for predictions of RNA duplex stability. Proceedings of the National Academy of Sciences of the United States of America 839373–9377
    [Google Scholar]
  17. Gasson M.J. 1983; Plasmid complements of Streptococcus lactis NCD0712 and other lactic streptococci after protoplast induced curing. Journal of Bacteriology 154:1–9
    [Google Scholar]
  18. Georgopoulos C.P., Herskowitz I. 1971; Escherichia coli mutants blocked in lambda synthesis. In The Bacteriophage Lambda pp. 553–564 Hershey A.D. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Gething M.J., Sambrook J. 1992; Protein folding in the cell. Nature; London: 35533–45
    [Google Scholar]
  20. Goff S.A., Goldberg A.L. 1985; Production of abnormal proteins in Escherichia coli stimulates transcription of Ion and other heat shock genes. Cell 41:587–595
    [Google Scholar]
  21. Graves M.C., Rabinowitz J.C. 1986; In vivo and in vitro transcription of the Clostridium pasteurianium ferredoxin gene. Journal of Biological Chemistry 261:11409–11415
    [Google Scholar]
  22. Grunstein M., Wallis J. 1979; Colony hybridization. Methods in Enzymology 68:379–389
    [Google Scholar]
  23. Hardie J.M. 1986 In Bergey’s Manual of Systematic Bacteriology 2 pp. 1065–1068 Holt J.G., Sneath P.H.A., Mair N.S., Sharpe M.E. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Hearne C.M., Ellar D.J. 1989; Nucleotide sequence of a Bacillus subtilis gene homologous to the dnaK gene of Escherichia coli. Nucleic Acids Research 17:8873
    [Google Scholar]
  25. Heyde M., Portalier P. 1990; Acid shock proteins of Escherichia coli. FEMS Microbiology Letters 69:19–26
    [Google Scholar]
  26. James R., Dean D.O., Debbage J. 1993; Five open reading frames upstream of the dnaK gene of Escherichia coli DNA sequence. Journal of DNA Sequencing & Mapping 3:327–332
    [Google Scholar]
  27. Johnson C., Chandrasekhar G.N., Georgopoulos C. 1989; Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro. Journal of Bacteriology 171:1590–1596
    [Google Scholar]
  28. Langer T., Lu C., Echols H., Flanagan J., Hayer M.K., Hartl F.U. 1992; Successive action of DnaK, DnaJ and GroEL along the pathway of protein mediated folding. Nature; London: 356683–689
    [Google Scholar]
  29. Lennox E.S. 1955; Transduction of linked genetic characters of the host bacteriophage PI. Virology 1:190–200
    [Google Scholar]
  30. Lewington J., Greenaway S.D., Spillane B.J. 1987; Rapid small scale preparation of bacterial genomic DNA suitable for cloning and hybridization analysis. Letters in Applied Microbiology 5:51–53
    [Google Scholar]
  31. Li M., Wong S.L. 1992; Cloning and characterization of the groESL operon from Bacillus subtilis. Journal of Bacteriology 174:3981–3992
    [Google Scholar]
  32. Ludwig W., Seewaldt E., Kilpper-Balz R., Scheifer K.H., Magnum L., Woese C.R., Fox G.E., Stackebrandt E. 1985; The phylogenic position of Streptococcus and Enterococcus. Journal of General Microbiology 131:543–551
    [Google Scholar]
  33. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Marck C. 1988; ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Research 16:1829–1836
    [Google Scholar]
  35. Marshall V.M. 1987; Fermented milks and their future trends.I.Microbiological aspects. Journal of Dairy Research 54:559–574
    [Google Scholar]
  36. Meury J., Kohiyama M. 1991; Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli. Journal of Bacteriology 173:4404–4410
    [Google Scholar]
  37. Morimoto R.I., Tissieres A., Georgopoulos C. 1990; The stress response, function of the proteins, and perspectives, 1. In Stress Proteins in Biology and Medicine pp. 1–36 Edited by Morimoto R.I., Tissieres A., Georgopoulos C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Narberhaus F., Bahl H. 1992; Cloning, sequencing and molecular analysis of the groESL operon of Clostridium acetobutylicum. Journal of Bacteriology 174:3282–3289
    [Google Scholar]
  39. Narberhaus F., Giebeler K., Bahl H. 1992; Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ and a new heat shock gene. Journal of Bacteriology 174:3290–3299
    [Google Scholar]
  40. Paek K.H., Walker G.C. 1987; Escherichia coli dnaK null mutants are inviable at high temperatures. Journal of Bacteriology 169:283–290
    [Google Scholar]
  41. Parsell D.A., Sauer R.T. 1989; Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes and Development 3:1226–1232
    [Google Scholar]
  42. Pelham H.R.B. 1986; Speculations on the functions of the major heat shock and glucose related proteins. Cell 46:959–961
    [Google Scholar]
  43. Platt T. 1986; Transcription termination and the regulation of gene expression. Annual Review of Biochemistry 55:339–372
    [Google Scholar]
  44. Sakakibara Y. 1988; The dnaK gene of Escherichia coli functions in initiation of chromosome replication. Journal of Bacteriology 170:972–979
    [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  46. Shinnick T.M. 1987; The 65 kilodalton antigen of Mycobacterium tuberculosis. Journal of Bacteriology 169:1080–1088
    [Google Scholar]
  47. Schmidt A., Schiesswohl M., Völker-Hecker M., Schumann W. 1992; Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. Journal of Bacteriology 174:3993–3999
    [Google Scholar]
  48. Stewart G.S.A.B., Williams P. 1992; lux genes and the applications of bacterial bioluminescence. Journal of General Microbiology 138:1289–1300
    [Google Scholar]
  49. Sussman M.D., Setlow P. 1987; Nucleotide sequence of a Bacillus megaterium gene homologous to the dnaK gene of Escherichia coli. Nucleic Acids Research 15:3923–3928
    [Google Scholar]
  50. Taglicht D., Padan E., Oppenheim A.B., Schuldiner S. 1987; An alkaline shift induces the heat shock response in Escherichia coli. Journal of Bacteriology 169:885–887
    [Google Scholar]
  51. Terzhagi B.E., Sandine W.E. 1975; Improved medium for lactic Streptococci and their bacteriophages. Applied Microbiology 29:807–813
    [Google Scholar]
  52. Tilly H., Hanser R., Campbell J., Ostheimer G.J. 1993; Isolation of dnaJ, dnaK and grpE homologues from Borrelia burgdorferri and complementation of Escherichia coli mutants. Molecular Microbiology 1:359–369
    [Google Scholar]
  53. Van Asseldonk M., Simons A., Visser H., De Vos W.M., Simons G. 1993; Cloning, nucleotide sequence and regulatory analysis of the Lactococcus lactis dnaJ gene. Journal of Bacteriology 175:1637–1644
    [Google Scholar]
  54. Van De Guchte M., Kok J., Venema G. 1992; Gene expression in Lactococcus lactis. FEMS Microbiology Reviews 88:73–92
    [Google Scholar]
  55. Völker U., Mach H., Schmidt R., Hecker M. 1992; Stress proteins and cross-protection by heat shock and salt stress in Escherichia coli. Journal of General Microbiology 138:2125–2135
    [Google Scholar]
  56. Webb R., Reddy K.J., Sherman L.A. 1990; Regulation and sequence of the Synechococcus sp.strain PCC7942 groESL operon, encoding a cyanobacterial chaperonin. Journal of Bacteriology 172:5079–5088
    [Google Scholar]
  57. Wetzstein M., Völker U., Dedio J., Lobau S., Zuber U., Schiesswohl M., Herget C., Hecker M., Schumann W. 1992; Cloning, sequencing and molecular analysis of the dnaK locus from Bacillus subtilis. Journal of Bacteriology 174:3300–3310
    [Google Scholar]
  58. Whitaker R.D., Batt C.A. 1991; Characterization of the heat shock response in Lactococcus lactis subsp.lactis. Applied and Environmental Biology 57:1408–1412
    [Google Scholar]
  59. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  60. Zuker M., Stiegler P. 1981; Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9:133–148
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-3253
Loading
/content/journal/micro/10.1099/00221287-139-12-3253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error