1887

Abstract

The gene encoding a periplasmic pH 2·5 acid phosphatase from was placed under the control of an inducible promoter and integrated into the chromosome of The majority of the AppA protein synthesized in accumulated in the periplasm whereas about 30% was secreted into the medium. The kinetics of AppA secretion through the ‘outer envelopes’ (i.e. periplasm + outer membrane) were followed after AppA induction. The results suggest that AppA crosses these envelopes by a mechanism involving diffusion and show that the periplasmic accumulation of AppA and envelope permeability are decreased by mutations that decrease the secretion of native proteins in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-3243
1993-12-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-3243.html?itemId=/content/journal/micro/10.1099/00221287-139-12-3243&mimeType=html&fmt=ahah

References

  1. Andro T., Chambost J.P., Kotoujansky A., Cattaneo J., Bertheau Y., Barras F., Van Gijsegem F., Coleno A. 1984; Mutants of Erwinia chrysanthemi defective in secretion of pectinase. Journal of Bacteriology 160:1199–1203
    [Google Scholar]
  2. Appleyard R.K. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452
    [Google Scholar]
  3. Baty D., Lloubes R., Geli V., Lazdunski C., Howard S.P. 1987; Extracellular release of colicin A is non-specific. EMBO Journal 6:2463–2468
    [Google Scholar]
  4. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  5. Boquet P.L., Manoil C., Beckwith J. 1987; Use of TnphoA to detect genes for exported proteins in Escherichia coli: identification of the plasmid-encoded gene for a periplasmic acid phosphatase. Journal of Bacteriology 169:1663–1669
    [Google Scholar]
  6. Breton A., Guespin-Michel J.F. 1987; E. coli pH 2·5 acid phosphatase and β-lactamase TEM-2 are secreted into the medium by Myxococcus xanthus. FEMS Microbiology Letters 40:183–188
    [Google Scholar]
  7. Breton A.M., Jaoua S., Guespin-Michel J.F. 1985; Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. Journal of Bacteriology 161:523–528
    [Google Scholar]
  8. Breton A.M., Younes G., Van Gijsegen F., Guespin-Michel J.F. 1986; Expression in Myxococcus xanthus of foreign genes coding for secreted pectate lyases of Erwinia chrysanthemi. Journal of Biotechnology 4:303–311
    [Google Scholar]
  9. Breton A.M., Buon I., Guespin-Michel J.F. 1990; Use of TnphoA to tag exported proteins in Myxococcus xanthus. FEMS Microbiology Letters 67:179–186
    [Google Scholar]
  10. Bretscher A.P., Kaiser D. 1978; Nutrition of Myxococcus xanthus, a fruiting myxobacterium. Journal of Bacteriology 133:763–768
    [Google Scholar]
  11. Campos J.M., Geiselsoder J., Zusman D. 1978; Isolation of bacteriophage M×4, a generalized transducing phage for Myxococcus xanthus. Journal of Molecular Biology 119:167–178
    [Google Scholar]
  12. Dagert M., Ehrlich S.D. 1974; Prolonged incubation in calcium chloride improves competence of Escherichia coli cells. Gene 6:23–28
    [Google Scholar]
  13. Dassa E., Boquet P.L. 1981; ExpA: a conditional mutation affecting the expression of a group of exported proteins in Escherichia coli K-12. Molecular and General Genetics 181:192–200
    [Google Scholar]
  14. Dassa E., Boquet P.L. 1985; Identification of the gene appA for the acid phosphatase (pH optimum 2·5) of Escherichia coli. Molecular and General Genetics 200:68–73
    [Google Scholar]
  15. Dassa J., Marck C., Boquet P.L. 1990; The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2·5 acid phosphatase and glucose-1-phosphatase. Journal of Bacteriology 172:5497–5500
    [Google Scholar]
  16. Datta N., Hedges R.W., Shaw E.J., Sykes R.B., Richmond M.H. 1971; Properties of an R factor from Pseudomonas aeruginosa. Journal of Bacteriology 108:1244–1249
    [Google Scholar]
  17. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  18. Hartzell P., Kaiser D. 1991; Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus. Journal of Bacteriology 173:7615–7624
    [Google Scholar]
  19. He S.Y., Lindeberg M., Chatterjee A.K., Collmer A. 1991; Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. Proceedings of the National Academy of Sciences of the United States of America 88:1079–1083
    [Google Scholar]
  20. Hirst T.R., Welch R.A. 1988; Mechanisms for secretion of extracellular proteins by Gram-negative bacteria. Trends in Bio-chemical Sciences 13:265–269
    [Google Scholar]
  21. Hodgkin J., Kaiser D. 1979; Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Molecular and General Genetics 171:167–176
    [Google Scholar]
  22. Holmes D.S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  23. Howard S.P., Buckley J.T. 1983; Intracellular accumulation of extracellular proteins by pleiotropic export mutants of Aeromonas hydrophila. Journal of Bacteriology 154:413–418
    [Google Scholar]
  24. Jaoua S., Breton A.M., Younes G., Guespin-Michel J.F. 1986; Structural instability and stabilization of IncP-1 plasmids integrated into the chromosome of Myxococcus xanthus. Journal of Biotechnology 4:313–323
    [Google Scholar]
  25. Jaoua S., Letouvet-Pawlak B., Monnier C., Guespin-Michel J.F. 1990; Mechanism of integration of the broad host range plasmid RP4 into the chromosome of Myxococcus xanthus. Plasmid 23:183–193
    [Google Scholar]
  26. Kaiser D. 1979; Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proceedings of the National Academy of Sciences of the United States of America 76:5952–5956
    [Google Scholar]
  27. Kalos M., Zissler J. 1990; Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus. Proceedings of the National Academy of Sciences of the United States of America 87:8316–8320
    [Google Scholar]
  28. Kellenbrger E. 1990; The ‘Bayer bridges’ confronted with results from improved electron microscopy methods. Molecular Microbiology 4:697–705
    [Google Scholar]
  29. Kopecko D.J., Brevet J., Cohen S.N. 1976; Involvement of multiple translocating DNA segments and recombinational hotspots in the structural evolution of bacterial plasmids. Journal of Molecular Biology 108:333–360
    [Google Scholar]
  30. Letouvet-Pawlak B. 1991a Mécanisme de sécrétion des protéines chez Myxococcus xanthus: étude de la sécrétion d’une protéine étrangère aprés clonage du géne en aval d’un promoteur inductibl Thése de Doctorat; Univrsité de Rouen (France):
    [Google Scholar]
  31. Letouvet-Pawlak B. 1991b; La seécrétion des protéines chez les bactériés à Gram negatif. Annales de l’Institut Pasteur/actualites 4:290–309
    [Google Scholar]
  32. Letouvet-Pawlak B., Monnier C., Barray S., Hodgson D.A., Guespin-Michel J.F. 1990; Comparison of β-galactosidase production by two inducible promoters in Myxococcus xanthus. Research in Microbiology 141:425–435
    [Google Scholar]
  33. Manoil C., Beckwith J. 1985; Tn phoA: a transposon probe for protein export signals. Proceedings of the National Academy of Sciences of the United States of America 82:8129–8133
    [Google Scholar]
  34. Masson P.J., Guespin-Michel J.F. 1988; An extracellular blood-anticoagulant glycopeptide produced exclusively during vegetative growth by Myxococcus xanthus and other myxobacteria is not co-regulated with other extracellular macromolecules. Journal of General Microbiology 134:801–806
    [Google Scholar]
  35. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Millet J. 1970; Characterization of proteinases excreted by Bacillus subtilis Marburg strain during sporulation. Journal of Applied Bacteriology 33:207–219
    [Google Scholar]
  37. Nicaud J.M., Breton A., Younes G., Guespin-Michel J.F. 1984; Mutants of Myxococcus xanthus impaired in protein secretion: an approach to study of a secretory mechanism. Applied Microbiology and Biotechnology 20:344–350
    [Google Scholar]
  38. Petit F., Merah M., Monnier C., Guespin-Michel J.F. 1993; Mutations in two new loci that impair both extracellular protein production and development in Myxococcus xanthus. Journal of Bacteriology 175:4239–4244
    [Google Scholar]
  39. Pugsley A.P. 1988; Protein secretion across the outer membrane of Gram-negative bacteria. In Protein Transfer and Organelle Bio-genesis pp. 607–652 Das R. A., Robbins P. W. Edited by London: Academic Press;
    [Google Scholar]
  40. Pugsley A.P. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiological Reviews 57:50–108
    [Google Scholar]
  41. Reimmann C., Rella M., Haas D. 1988; Integration of replication-defective R68.45-like plasmids into the Pseudomonas aeruginosa chromosome. Journal of General Microbiology 134:1515–1523
    [Google Scholar]
  42. Rosenberg E., Varon M. 1984; Antibiotics and lytic enzymes. In Myxobacteria. Development and Cell Interactions pp. 109–125 Rosenberg E. Edited by New York,Berlin, Heidelberg,Tokyo: Springer-Verlag;
    [Google Scholar]
  43. Saulnier P., Hanquier J., Jaoua S., Reichenbach H., Guespin-Michel J.F. 1988; Utilization of Inc PI plasmids as vectors for transposon mutagenesis in Myxobacteria. Journal of General Microbiology 134:2889–2895
    [Google Scholar]
  44. Shimkets L.J. 1989; The role of the cell surface in social and adventurous behaviour of myxobacteria. Molecular Microbiology 3:1295–1298
    [Google Scholar]
  45. Stark M.J.R. 1987; Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene 51:255–267
    [Google Scholar]
  46. Thurn K.K., Chatterjee A.K. 1985; Single-site chromosomalTn5 insertions affect the export of pectolytic and cellulolytic enzymes in Erwinia chrysanthemi EC 16. Applied and Environmental Microbiology 6:894–898
    [Google Scholar]
  47. Wretlind B., Pavlovskis O.R. 1984; Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins. Journal of Bacteriology 158:801–808
    [Google Scholar]
  48. Zusman D.R., Krotoski D.M., Cumsky M. 1978; Chromosome replication in Myxococcus xanthus. Journal of Bacteriology 133:122–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-3243
Loading
/content/journal/micro/10.1099/00221287-139-12-3243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error