1887

Abstract

Chlorate-resistant mutants of the denitrifying bacterium were generated by transposon Tn mutagenesis. One class was deficient in membrane-bound nitrate reductase activity but retained a periplasmic nitrate reductase activity. Using transposon marker rescue it was shown that in one such mutant, M-6, the transposon was inserted in the membrane-bound nitrate reductase subunit structural gene (termed in order to be consistent with the nomenclature of the major nitrate reductase operon). The translated sequence (total of 106 amino acids) from around the point of transposon insertion showed approximately 90% amino acid identity with the subunits of the nitrate reductases. Under anaerobic growth conditions M-6 overproduced the periplasmic nitrate reductase activity allowing anaerobic growth with nitrate as electron acceptor. A regulatory link was inferred between the presence of the membrane-bound nitrate reductase and expression of the periplasmic nitrate reductase. This is the first demonstration of full denitrification in an organism possessing only a periplasmic nitrate reductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-3205
1993-12-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-3205.html?itemId=/content/journal/micro/10.1099/00221287-139-12-3205&mimeType=html&fmt=ahah

References

  1. Alef K., Klemme J.-H. 1979; Assimilatory nitrate reductase of Rhodopseudomonas capsulata AD2: a molybdo-hemeprotein. Zeit-schrift für Naturforschung 34c:33–37
    [Google Scholar]
  2. Alefounder P.R., Ferguson S.J. 1980; The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans. Biochemical Journal 192:231–240
    [Google Scholar]
  3. Andrews S.C., Harrison P.M., Guest J.R. 1991; A molecular analysis of the 53.3 minute region of the Escherichia coli linkage map. Journal of General Microbiology 137:361–367
    [Google Scholar]
  4. Auerswald E., Ludwig G., Schaller H. 1980; Structural analysis of Tn5. Cold Spring Harbour Symposia on Quantitative Biology 45:107–113
    [Google Scholar]
  5. Augier V., Guigliarelli B., Asso M., Bertrand P., Frixon C., Giordano G., Chippaux M., Blasco F. 1993; Site-directed mutagenesis of conserved cysteine residues within the β subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes. Biochemistry 32:2013–2023
    [Google Scholar]
  6. Ballard A.L., Ferguson S.J. 1987; Molecular properties of the respiratory nitrate reductase of Paracoccus denitrificans. Biochemical Society Transactions 15:937–938
    [Google Scholar]
  7. Ballard A.L., Ferguson S.J. 1988; Respiratory nitrate reductase from Paracoccus denitrificans. Evidence for two b-type haems in the γ subunit and properties of a water-soluble active enzyme containing α and βsubunits. European Journal of Biochemistry 174:207–212
    [Google Scholar]
  8. Ballard A.L., Mcewan A.G., Richardson D.J., Jackson J.B., Ferguson S.J. 1990; Rhodobacter capsulatus strain BK5 possesses a membrane bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. Archives of Microbiology 154:301–303
    [Google Scholar]
  9. Bell L.C., Ferguson S.J. 1991; Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochemical Journal 273:423–427
    [Google Scholar]
  10. Bell L.C., Richardson D.J., Ferguson S.J. 1990; Periplasmic and membrane-bound italic nitrate reductases in Thiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Letters 265:85–87
    [Google Scholar]
  11. Berg D.E. 1989; Transposon Tn5. In Mobile DNA pp. 185–210 Berg D. E., Howe M. M. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Berg D.E., Schmandt M.A., Lowe J.B. 1983; Specificity of transposon Tn5 insertion. Genetics 105:813–828
    [Google Scholar]
  13. Berg B.L., Li J., Heider J., Stewart V. 1991; Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. Journal of Biological Chemistry 266:22380–22385
    [Google Scholar]
  14. Berks B.C., Baratta D., Richardson D.J., Ferguson S.J. 1993; Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. European Journal of Biochemistry 212:467–476
    [Google Scholar]
  15. Bilous P.Y., Cole S.T., Anderson W.F., Weiner J.H. 1988; Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Molecular Microbiology 2:785–795
    [Google Scholar]
  16. Blasco F., Iobbi C., Giordano G., Chippaux M., Bonnefoy V. 1989; Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer. Molecular and General Genetics 218:249–256
    [Google Scholar]
  17. Blasco F., Iobbi C., Ratouchniak J., Bonnefoy V., Chippaux M. 1990; Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Molecular and General Genetics 222:104–111
    [Google Scholar]
  18. Böhm R., Sauter M., Böck A. 1990; Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Molecular Microbiology 4:231–243
    [Google Scholar]
  19. Bokranz M., Gutmann M., KÖrtner C., Kojro E., Fahrenholz F., Lauterbach F., KrÖger A. 1991; Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Archives of Microbiology 156:119–128
    [Google Scholar]
  20. Byrne M.D., Nicholas D.J.D. 1987; A membrane-bound dissimilatory nitrate reductase from Rhodobacter sphaeroides f.sp.denitrificans. Biochimica et Biophysica Acta 915:120–124
    [Google Scholar]
  21. Chandra T.S., Friedrich C.G. 1986; Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. Journal of Bacteriology 166:446–452
    [Google Scholar]
  22. Craske A., Ferguson S.J. 1986; The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterization and kinetic properties. European Journal of Biochemistry 158:429–436
    [Google Scholar]
  23. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis progams for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  24. Eckhardt T. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588
    [Google Scholar]
  25. Ferguson S.J., Jackson J.B., McEwan A.G. 1987; Anaerobic respiration in the Rhodospirillaceae: characterization of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiology Reviews 46:117–143
    [Google Scholar]
  26. Friedrich C.G., Meyer O., Chandra T.S. 1986; Molybdenum-dependent sulfur oxidation in facultatively lithoautotrophic thio-bacteria. FEMS Microbiology Letters 37:105–108
    [Google Scholar]
  27. Guigliarelli B., Asso M., More C., Augier V., Blasco F., Pommier J., Giordano G., Bertrand P. 1992; EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism. European Journal of Biochemistry 207:61–68
    [Google Scholar]
  28. Harms N., De Vries G.E., Maurer K., Veltkamp E., Stouthamer A.H. 1985; Isolation and characterization of Paracoccus de-nitrificans mutants with defects in the metabolism of one carbon compounds. Journal of Bacteriology 164:1064–1070
    [Google Scholar]
  29. Hettrich D., Peschke B., Tshisuaka B., Lingens F. 1991; Microbial metabolism of quinoline and related compounds. X. The molybdopterin cofactors of quinoline oxidoreductases from Pseudomonas putida 86 and Rhodococcus spec. B1 and of xanthine dehydrogenase from Pseudomonas putida 86. Biological Chemistry Hoppe-Seyler 372:513–517
    [Google Scholar]
  30. Ingledew W.J., Halling P.J. 1976; Paramagnetic centres of the nitrite oxidizing bacterium Nitrobacter. FEBS Letters 67:90–93
    [Google Scholar]
  31. Iobbi C., Santini C.-L., Bonnefoy V., Giordano G. 1987; Biochemical and immunological evidence for a second nitrate reductase in Escherichia coli K-12. European Journal of Biochemistry 168:451–459
    [Google Scholar]
  32. Johnson J.L., Chaudry M., Rajagopalan K.V. 1991; Identification of a molybdopterin-containing molybdenum cofactor in xanthine dehydrogenase from Pseudomonas aeruginosa. BioFactors 3:103–107
    [Google Scholar]
  33. Johnson M.K., Bennett D.E., Morningstar J.E., Adams M.W.W., Mortenson L.E. 1985; The iron-sulfur cluster composition of Escherichia coli nitrate reductase. Journal of Biological Chemistry 260:5456–5463
    [Google Scholar]
  34. Jones R.W., Garland P.B. 1977; Sites and specificity of the reaction of bipyridilium compounds with anaerobic respiratory systems of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochemical Journal 190:79–94
    [Google Scholar]
  35. Jones R.W., Lamont A., Garland P.B. 1980; The mechanism of proton translocation driven by the respiratory nitrate reductase complex in Escherichia coli. Biochemical Journal 190:79–94
    [Google Scholar]
  36. Kerby R.L, Hong S.S., Ensign S.A., Coppoc L.J., Ludden P.W., Roberts G.P. 1992; Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. Journal of Bacteriology 174:5284–5294
    [Google Scholar]
  37. Kirsten K., Bock E. 1992; Unpublished sequence. EMBL database accession number X66067.
    [Google Scholar]
  38. Krafft T., Bokranz M., Klimmek O., Schröder I., Fahrenholz F., Kojro E., Kröger A. 1992; Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. European Journal of Biochemistry 206:503–510
    [Google Scholar]
  39. Ludwig W., Mittenhuber G., Friedrich C.G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. International Journal of Systematic Bacteriology 43:363–367
    [Google Scholar]
  40. McEwan A.G., Jackson J.B., Ferguson S.J. 1984; Rationalization of the properties of nitrate reductases in Rhodopseudomonas capsulata. Archives of Microbiology 137:344–349
    [Google Scholar]
  41. Mcewan A.G., Wetzstein H.G., Meyer O., Jackson J.B., Ferguson S.J. 1987; The periplasmic nitrate reductase of Rhodobacter capsulatus; purification, characterization and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Archives of Microbiology 47:340–345
    [Google Scholar]
  42. Meincke M., Bock E., Kastrau D., Kroneck P.M.H. 1992; Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Archives of Microbiology 158:127–131
    [Google Scholar]
  43. Moir J.W.B., Baratta D., Richardson D.J., Ferguson S.J. 1993; The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. European Journal of Biochemistry 212:377–385
    [Google Scholar]
  44. Nicholls D.G., Ferguson S.J. 1992 Bioenergetics 2. London: Academic Press;
    [Google Scholar]
  45. Parsonage D., Ferguson S.J. 1983; Reassessment of pathways of electron flow to nitrate reductase that are coupled to energy conservation in Paracoccus denitrificans. FEBS Letters 153:108–112
    [Google Scholar]
  46. Rajagopalan K.V., Johnson J.L. 1992; The pterin molybdenum cofactors. Journal of Biological Chemistry 267:10199–10202
    [Google Scholar]
  47. Richardson D.J., Ferguson S.J. 1992; The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Archives of Microbiology 157:535–537
    [Google Scholar]
  48. Richardson D.J., King G.F., Kelly D.J., McEwan A.G., Ferguson S.J., Jackson J.B. 1988; The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Archives of Microbiology 150:131–137
    [Google Scholar]
  49. Richardson D.J., McEwan A.G., Page M.D., Jackson J.B., Ferguson S.J. 1990; The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3 reductase of Rhodobacter capsulatus and resolution of a soluble NO3-reductase-cytochrome-c552 redox complex. European Journal of Biochemistry 194:263–270
    [Google Scholar]
  50. Robertson L.A., Kuenen J.G. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Journal of General Microbiology 129:2847–2855
    [Google Scholar]
  51. Robertson L.A., Kuenen J.G. 1984; Aerobic denitrification: a controversy revived. Archives of Microbiology 139:351–354
    [Google Scholar]
  52. Robertson L.A., Kuenen J.G. 1990; Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek 57:139–152
    [Google Scholar]
  53. Rothery R.A., Weiner J.E. 1991; Alteration of the iron-sulfur cluster composition of Escherichia coli dimethyl sulfoxide reductase by site-directed mutagenesis. Biochemistry 30:8296–8305
    [Google Scholar]
  54. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY;
    [Google Scholar]
  55. Satoh T. 1981; Soluble dissimilatory nitrate reductase containing cytochrome c from a photodenitrifier, Rhodopseudomonas sphaer- oides forma sp.denitrificans. Plant Cell Physiology 22:443–452
    [Google Scholar]
  56. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. BioTechnology 1:784–791
    [Google Scholar]
  57. Sodergren E.J., Hsu P.-Y., Demoss J.A. 1988; Roles of the narJ and narl gene products in the expression of nitrate reductase in Escherichia coli. Journal of Biological Chemistry 263:16156–16162
    [Google Scholar]
  58. Stewart V. 1988; Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiological Reviews 52:190–232
    [Google Scholar]
  59. Weiner J.H., Rothery R.A., Sambasivarao D., Trieber C.A. 1992; Molecular analysis of the dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. Biochimica et Biophysica Acta 1102:1–18
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-3205
Loading
/content/journal/micro/10.1099/00221287-139-12-3205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error