1887

Abstract

In peptide uptake increases the internal concentration of amino acids and thus triggers amino acid secretion. The peptide uptake system is stimulated by a factor of two in cells grown on pure peptone medium in comparison to peptone media with additional carbon sources. Uptake depends on the proton-motive force and shows a broad substrate spectrum. Peptide uptake is characterized by a of about 230 μ and a of 12 nmol min (mg dry wt) for the peptide lysyl-alanine (Lys-Ala). Lysine secretion in the wild-type of does not show Michaelis-Menten-type kinetics as reported for the producing strains DG 52–5 and MH 20–22B. The secretion of lysine depends on the composition of the medium in which the cells were grown prior to the initiation of secretion by peptide uptake. The lack of secretion activity when the cells are shifted to peptone medium in the presence of chloramphenicol indicates that protein synthesis is necessary for this regulatory process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-3115
1993-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-3115.html?itemId=/content/journal/micro/10.1099/00221287-139-12-3115&mimeType=html&fmt=ahah

References

  1. Abouhamad W.N., Manson M., Gibson M.M., Higgins C.F. 1991; Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp). Molecular Microbiology 5:1035–1047
    [Google Scholar]
  2. Boles E., Ebbighausen H., Eikmanns B., KrÄmer R. 1993; Unusual regulation of the uptake system for branched-chain amino acids in Corynebacterium glutamicum. Archives of Microbiology 159:147–152
    [Google Scholar]
  3. Brecher A.S., Moehlman T.A., Hann W.D. 1992; Utilization of chymotrypsin as sole carbon and (or) nitrogen source by Escherichia coli. Canadian Journal of Microbiology 38:290–295
    [Google Scholar]
  4. BrÖer S., KrÄmer R. 1990; Uptake and exchange of lysine in Corynebacterium glutamicum. Journal of Bacteriology 172:7241–7248
    [Google Scholar]
  5. BrÖer S., KrÄmer R. 1991a; Lysine excretion by Corynebacterium glutamicum. I. Identification of a specific carrier system. European Journal of Biochemistry 202:131–135
    [Google Scholar]
  6. BrÖer S., KrÄmer R. 1991b; Lysine excretion by Corynebacterium glutamicum. II. Energetics and mechanism of the transport system. European Journal of Biochemistry 202:136–142
    [Google Scholar]
  7. BrÖer S., Eggeling L., KrÄmer R. 1993; Strains of Coryne-bacterium glutamicum differing in lysine productivity possess different lysine excretion systems. Applied and Environmental Microbiology 59:316–321
    [Google Scholar]
  8. Cowell J.L. 1974; Energetics of glycylglycine transport in Escherichia coli. Journal of Bacteriology 120:139–146
    [Google Scholar]
  9. Duperray F., Jezequel D., Ghazi A., Letellier L., Shechter E. 1992; Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants. Biochimica et Biophysica Acta 1103:250–258
    [Google Scholar]
  10. Ebbighausen H., Weil B., KrÄmer R. 1989; Transport of branched-chain amino acids in Corynebacterium glutamicum. Archives of Microbiology 151:238–244
    [Google Scholar]
  11. Higgins C.F., Gibson M.M. 1986; Peptide transport in bacteria. Methods in Enzymology 125:365–377
    [Google Scholar]
  12. Hiles I.D., Powell L.M., Higgins C.F. 1987; Peptide transport in Salmonella typhimurium: molecular cloning and characterization of the oligopeptide permease genes. Molecular and General Genetics 206:101–109
    [Google Scholar]
  13. Klingenberg M., Pfaff E. 1967; Means of terminating reactions. Methods in Enzymology 10:680–684
    [Google Scholar]
  14. KrÄmer R., Lambert C., Hoischen C., Ebbighausen H. 1990; Uptake of glutamate in Corynebacterium glutamicum. I. Kinetic properties and regulation by internal pH and potassium. European Journal of Biochemistry 194:929–935
    [Google Scholar]
  15. Kunji E.R.S., Smid E.J., Plapp R., Poolman B., Konings W.N. 1993; Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. Journal of Bacteriology 175:2052–2059
    [Google Scholar]
  16. Kunst A., Draeger B., Ziegenhorn J. 1983; UV-methods with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis 6 pp. 163–172 Basel:: Verlag Chemie Weinheim.;
    [Google Scholar]
  17. Menkel E., Thierbach G., Eggeling L., Sahm H. 1989; Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Applied and Environmental Microbiology 55:684–688
    [Google Scholar]
  18. Miller D.L., Rodwell V.W. 1971; Metabolism of basic amino acids in Pseudomonas putida: properties of the inducible lysine transport system. Journal of Biological Chemistry 246:1765–1771
    [Google Scholar]
  19. Nakayama K. 1985; Lysine. In Comprehensive Biotechnology 3 Moo-Young M. Edited by Oxford:: Pergamon Press.;
    [Google Scholar]
  20. Nakayama K., Tanaka H., Hagino H., Kinoshita H. 1966; Studies on lysine fermentation. V. Concerted feedback inhibition on aspartic semialdehyde-pyruvate condensation in Micrococcus glutamicus. Agricultural and Biological Chemistry 30:611–616
    [Google Scholar]
  21. Nisbet T.M., Payne J.W. 1982; The characteristics of peptide uptake in Streptococcus faecalis: studies on the transport of natural peptides and antibacterial phosphonopeptides. Journal of General Microbiology 128:1357–1364
    [Google Scholar]
  22. Payne J.W., Bell G. 1977; Substrate interaction during transport of amino acids and peptides by Escherichia coli: relevance to regulation of peptide uptake. FEMS Microbiology Letters 2:301–304
    [Google Scholar]
  23. Payne J.W., Bell G. 1979; Direct determination of the properties of peptide transport systems in Escherichia coli, using a fluorescent labelling procedure. Journal of Bacteriology 137:447–455
    [Google Scholar]
  24. Payne J.W., Gilvarg C. 1978; Transport of peptides in bacteria. In Bacterial Transport pp. 325–383 Rosen B.P. Edited by New York:: Marcel Dekker.;
    [Google Scholar]
  25. Payne J.W., Nisbet T.M. 1981; Continuous monitoring of substrate uptake by microorganisms using fluorescamine: application to peptide transport by Saccharomyces cerevisiae and Streptococcus faecalis. Journal of Applied Biochemistry 3:447–458
    [Google Scholar]
  26. Perry D., Abraham E.P. 1979; Transport and metabolism of bacilysin and other peptides by suspensions of Staphylococcus aureus. Journal of General Microbiology 115:213–221
    [Google Scholar]
  27. Quay S.C., Oxender D.L. 1976; Regulation of branched-chain amino acid transport in Escherichia coli. Journal of Bacteriology 127:1225–1238
    [Google Scholar]
  28. Ring K. 1969; Die Induktion des aktiven Transposes neutraler Aminosäuren bei Streptomyces hydrogenous. Biochimica et Bio-physica Acta 183:375–393
    [Google Scholar]
  29. Schimz K.L., Rütten B., Tretter M. 1981; Determination of adenosine nucleotides with luciferin/luciferase from crude firefly lantern extract on a bioluminescence analyser. Advances in Bio-technology 1:457–462
    [Google Scholar]
  30. Smid E.J. 1991 Physiological implications of peptide transport in lactococci PhD thesis University of Groningen, The Netherlands.:
    [Google Scholar]
  31. Smid E.J., Driessen A.J.M., Konings W.N. 1989a; Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. Journal of Bacteriology 171292–298
    [Google Scholar]
  32. Smid E.J., Plapp R., Konings W.N. 1989b; Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. Journal of Bacteriology 1716135–6140
    [Google Scholar]
  33. Steffes C., Ellis J., Wu J., Rosen B.P. 1992; The lysP gene encodes the lysine-specific permease. Journal of Bacteriology 174:3242–3249
    [Google Scholar]
  34. Van Boven A., Konings W.N. 1987; A phosphate-bond-driven dipeptide transport system in Streptococcus cremoris is regulated by the internal pH. Applied and Environmental Microbiology 53:2897–2902
    [Google Scholar]
  35. Zaritsky A., Kihara M., Macnab R.M. 1981; Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. Journal of Membrane Biology 63:215–231
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-3115
Loading
/content/journal/micro/10.1099/00221287-139-12-3115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error