1887

Abstract

The filamentous fungus was found to produce four 1,3--glucanases (Glu I, II, III, IV). These enzymes were visualized by activity-staining after separation by native polyacrylamide gel electrophoresis (PAGE). During growth on glucose as the single carbon source, only Glu III was detectable in the culture supernatant of After glucose was exhausted from the medium, the extracellular (1,3)(1,6)---glucan (cinerean) capsule of the fungus was degraded. In this phase the other three enzymes became detectable and the amount of all four enzymes increased. The enzyme with the greatest activity was Glu II, which was purified to homogeneity by SDS-PAGE. Its was 75000 and its isoelectric point (pI) was 5·2. Glycosylation of Glu II was shown by the periodic acid/Schiff reaction after SDS-PAGE. Glu II cleaved cinerean and laminarin. Both substrates were degraded in an exo-manner as shown by product characterization, and by studying the viscosity decrease in comparison with the liberation of reducing groups. The concentration of substrate that gave half-maximal velocity (S) for Glu II was 580μg ml for cinerean and 152 μg ml for laminarin. For Glu III, also purified to homogeneity by SDS-PAGE, an of 84000 and a pI of 3·6 were determined. Glu III cleaved laminarin (S 119 μg ml) but not cinerean. Glu I and Glu IV were purified by activity-stained native PAGE. Both enzymes cleaved cinerean and laminarin in an exo-manner. Glu I focused at pI 4·9; its S was 275 μg ml with cinerean and 138 μg ml with laminarin. The pI of Glu IV was 3.4; its S was 171 μg ml for cinerean and 27 μg ml for laminarin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2833
1993-11-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2833.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2833&mimeType=html&fmt=ahah

References

  1. Bamforth C. W. 1980; The adaptability, purification and properties of exo-β1,3-glucanase from the fungus Trichoderma reesei. Bio-chemical Journal 191:863–866
    [Google Scholar]
  2. Bartnicki-Garcia S. 1968; Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology 22:87–105
    [Google Scholar]
  3. Bartnicki-Garcla S. 1987; The cell wall: a crucial structure of fungal evolution. British Mycological Society Symposium 13:389–403
    [Google Scholar]
  4. Beely J. G. 1987 Glycoprotein and Proteoglycan Techniques Amsterdam, New York Oxford: Elsevier;
    [Google Scholar]
  5. Bodenmann J., Heiniger U., Hohl H. R. 1984; Extracellular enzymes of Phytophthora infestans: endo-cellulase, β-glucosidase, and 1,3-β-glucanases. Canadian Journal of Microbiology 31:75–82
    [Google Scholar]
  6. Bull A. T. 1970; Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Archives of Biochemistry and Biophysics 137:345–356
    [Google Scholar]
  7. Burchard W. 1985 Polysaccharide Berlin, Heidelberg, New York & Tokyo: Springer;
    [Google Scholar]
  8. Copa-Patino J. L., Reyes F., Perez-Leblic M. I. 1989; Purification and properties of a 1,3-β-glucanase from Penicillium oxalicum autolysates. FEMS Microbiology Letters 65:285–292
    [Google Scholar]
  9. Dubourdieu D., Ribereau-Gayon P. 1980; Mise en evidence d’une β-(l–3)-glucanase exocellulaire chez Botrytis cinerea. Comptes Rendus de l’Academie des Sciences Paris 290:25–28
    [Google Scholar]
  10. Dubourdieu D., Ribereau-Gayon P. 1981; Structure of the extracellular β-d-glucan from Botrytis cinerea. Carbohydrate Research 93:294–299
    [Google Scholar]
  11. Dubourdieu D., DespIanques C., Villetaz J. C., Ribereau-Gayon P. 1985; Investigations of an industrial β-d-glucanase from Trichoderma harzianum. Carbohydrate Research 144:277–287
    [Google Scholar]
  12. Faretra F., Antonnacci E., Pollastro S. 1988; Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. Journal of General Microbiology 134:2543–2550
    [Google Scholar]
  13. Isobe K., Nokihara K. 1991; Physicochemical properties of mono- and diacylglycerol lipase from Penicillium camembertii. In Lipases: Structure, Mechanism and Genetic Engineering (GBF Monograph) 16 pp. 345–348 Alberghina L., Schmid R. D., Verger R. Edited by Weinheim: VCH;
    [Google Scholar]
  14. Jones D., Gordon A. H., Bacon J. S. D. 1973; Co-operative action by endo- and exo-β-(l–3) glucanases from parasitic fungi in the degradation of cell wall glucans of Sclerotinia sclerotiorum (Lib.) de Bary. Biochemical Journal 140:47–55
    [Google Scholar]
  15. Kitamoto Y., Kono R., Shimotori A., Mori N., Ichikawa Y. 1987; Purification and properties of exo-β-1,3-glucanase from Trichoderma harzianum. Agricultural and Biological Chemistry 51:3385–3386
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  17. Lampen J. O. 1971; Yeast and Neurospora invertases. In The Enzymes 5 pp. 291–305 Boyer P. D. Edited by New York & London: Academic Press;
    [Google Scholar]
  18. Leone G., Van Den Heuvel J. 1986; Regulation by carbohydrates of the sequential in vitro production of pectic enzymes by Botrytis cinerea. Canadian Journal of Botany 65:2133–2141
    [Google Scholar]
  19. Markwell M. A. K., Haas S. M., Bieber L. L., Tolbert N. E. 1978; A modification of the Lowry procedure to simpIify protein determination in membrane and lipoprotein sampIes. Analytical Biochemistry 87:206–210
    [Google Scholar]
  20. Meril C. R., Goldmann D., Sedmann S. A., Ebert M. H. 1981; Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438
    [Google Scholar]
  21. Montant P. C., Thomas L. 1977; Structure d’un glucane exocellulaire produit par le Botrytis cinerea (Pers.). Annales des Sciences Naturelles Botanique et Biologie Végétale 18:185–192
    [Google Scholar]
  22. Montant P. C., Thomas L. 1978; Proprietes physico-chimiques du β(1,3)β(1,6) glucane exocellulaire produit par le Botrytis cinerea (Pers.). Annales des Sciences Naturelles Botanique et Biologie Végétale 19:39–43
    [Google Scholar]
  23. Movahedi S., Heale J. B. 1990; Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex Pers in culture and in infected carrots. Physiological and Molecular pIant Pathology 36:289–302
    [Google Scholar]
  24. Nagata S., Sawatani M., Kuriyama M., Misono H., Nagasaki S. 1990a; Purification and characterization of nonlytic endo-β-1,3-glucanase I from Flavobacterium dorminator var. glucanolyticae. Agricultural and Biological Chemistry 54:2107–2114
    [Google Scholar]
  25. Nagata S., Maru I., Ishihara F., Misono H., Nagasaki S. 1990b; Cloning and expression of endo-β-1,3-glucanase gene from Flavobacterium dorminator in Escherichia coli and characterization of the gene product. Agricultural and Biological Chemistry 54:2675–2680
    [Google Scholar]
  26. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153:375–380
    [Google Scholar]
  27. Nelson T. E., Johnson J., Jantzen E., Kirkwood S. 1969; Action pattern and specificity of an exo-β-(l–3)-d-glucanase from Basidiomycetes species QM 806. Journal of Biological Chemistry 244:5972–5980
    [Google Scholar]
  28. Nombela C., Molina M., Cenamor R., Sanchez M. 1988; Yeast β-glucanases: a compIex system of secreted enzymes. Microbiological Sciences 5:328–332
    [Google Scholar]
  29. Ohno N., Hashimoto Y., Yadomae T. 1986; Purification and properties of an exo-(1–3)-β-d-glucanase from the culture filtrate of Mucor hiemalis. Carbohydrate Research 158:217–226
    [Google Scholar]
  30. Ohno N., Nono I., Yadomae T. 1989; Enzymatic and physiological properties of an exo-(l–3)-β-d-glucanase from Rhizoctonia solani. Carbohydrate Research 194:261–271
    [Google Scholar]
  31. Pan S.-Q., Ye X. S., Kuc J. 1989; Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Analytical Biochemistry 182:136–140
    [Google Scholar]
  32. Pielken P., Stahmann P., Sahm H. 1990; Increase in glucan formation by Botrytis cinerea and analysis of the adherent glucan. AppIied Microbiology and Biotechnology 33:1–6
    [Google Scholar]
  33. Rapp P. 1989; 1,3-β-glucanase, l,6-β-glucanase and β-glucosidase activities of Sclerotium glucanicum: synthesis and properties. Journal of General Microbiology 135:2847–2858
    [Google Scholar]
  34. Robertson E. F., Dannelly H. K., Malloy P. J., Reeves H. C. 1987; Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Analytical Biochemistry 167:290–294
    [Google Scholar]
  35. Sancez M., Nombela C., Villanueva J. R., Santos T. 1982; Purification and partial characterization of a developmentally regulated 1,3-β-glucanase from Penicillium italicum. Journal of General Microbiology 128:2047–2053
    [Google Scholar]
  36. Schimz K.-L., Irrgang K., Overhoff B. 1985; Trehalose, a cytopIasmatic disaccharide of Cellulomonas sp. DSM 20108: its identification, carbon-source dependent accumulation, and degradation during starvation. FEMS Microbiology Letters 30:165–169
    [Google Scholar]
  37. Schomburg D., Salzmann M. 1986 Enzyme Handbook 4 Berlin, Heidelberg, New York & Tokyo: Springer;
    [Google Scholar]
  38. Somogyi M. 1952; Notes of sugar determination. Journal of Biological Chemistry 195:19–23
    [Google Scholar]
  39. Stahlberg J., Johansson G., Pettersson G. 1988; A binding-site-deficient, catalytically active, core protein of endo-glucanase III from the culture filtrate of Trichoderma reesei. European Journal of Biochemistry 173:179–183
    [Google Scholar]
  40. Stahmann K.-P., Pielken P., Schimz K.-L., Sahm H. 1992; Degradation of extracellular β-(1,3)(1,6)-d-glucan by Botrytis cinerea. AppIied and Environmental Microbiology 58:3347–3354
    [Google Scholar]
  41. Tangerone B., Royer J. C., Nakas J. P. 1989; Purification and characterization of an endo-β-1,3 glucanase from Trichoderma longibrachiatum. AppIied and Environmental Microbiology 55:177–184
    [Google Scholar]
  42. Trimble R. B., Maley F. 1977; Subunit structure of external invertase from Saccharomyces cerevisiae. Journal of Biological Chemistry 252:4409–4412
    [Google Scholar]
  43. Urbanek H., Zalewska-Sobczak J. 1986; l,4-β-Galactanases and 1,3-β-glucanases of Botrytis cinerea isolate infecting appIe. Biochemie und Physiologie der Pflanzen 181:321–329
    [Google Scholar]
  44. Usui T., Totani K., Totsuka A., Oguchi M. 1985; Purification of endo-(1–3)-β-d-glucanases lysing yeast cell walls from Rhizoctonia solani. Biochimica et Biophysica Acta 840:255–263
    [Google Scholar]
  45. Villa T. G., Notario V., Villanueva J. R. 1978; Direct chemical proof of different glycosylation pattern for yeast exo- and endo-1,3-β-d-glucanases. Journal of General Microbiology 109:371–374
    [Google Scholar]
  46. Wessels J. G. H. 1988; A steady state model for apical wall growth in fungi. Acta Botanica Neerlandica 37:3–16
    [Google Scholar]
  47. Willetts H. J., Byrde R. J. W., Fielding A. H., Wong A. L. 1977; The taxonomy of the brown rot fungi (Monilinia spp.) related to their extracellular cell wall-degrading enzymes. Journal of General Microbiology 103:77–83
    [Google Scholar]
  48. Zacharius M. R., Zell T. E., Morrison J. H., Woodlock J. J. 1969; Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry 30:148–152
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2833
Loading
/content/journal/micro/10.1099/00221287-139-11-2833
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error