1887

Abstract

Cell extracts of grown in nikkomycin production media contained an enzyme (HisAT) that transaminated -histidine as the sole amino substrate with pyruvate as the amino group acceptor. HisAT was purified about 190-fold from the crude extract of . The enzyme was determined by gel filtration and SDS-PAGE to be a homodimer with a subunit molecular mass of approximately 45 kDa. The aminotransferase had maximum activity at pH 7·0 and 37 °C. The enzyme was highly specific for -histidine; pyruvate, 2-oxobutyrate, 2-oxovalerate and 2-oxocaproate were used as keto acceptors to about the same extent. The reaction mechanism was ping-pong. The values for -histidine and pyruvate, determined from Lineweaver-Burk plots, were 25 m and 10 m, respectively. Neither cell extracts of non-producing mutants nor extracts of , a species that does not synthesize nikkomycins, showed transaminating activity with a narrow substrate specificity for -histidine as the amino donor. This strongly suggests that the formation of HisAT is essential for nikkomycin production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2773
1993-11-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2773.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2773&mimeType=html&fmt=ahah

References

  1. Albritton W. L., Levin A. P. 1969; Histidine-2-oxoglutarate aminotransferase activity in Salmonella typhimurium. Biochemical Journal 114:662–664
    [Google Scholar]
  2. Ames B. N., Horecker B. L. 1956; The biosynthesis of histidine: imidazoleacetol phosphate transaminase. Journal of Biological Chemistry 220:113–119
    [Google Scholar]
  3. Bormann C., Mattern S., Schrempf H., Fiedler H.-P., Zähner H. 1989; Isolation of Streptomyces tendae mutants with an altered nikkomycin spectrum. Journal of Antibiotics 42:913–918
    [Google Scholar]
  4. Bormann C., Aberle K., Fiedler H.-P., Schrempf H. 1990; Genetic complementation of Streptomyces tendae deficient in nikkomycin production. Applied Microbiology and Biotechnology 32:424–430
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  6. Cleland W. W. 1963; The kinetics of enzyme-catalyzed reactions with two or more substrates or products. Biochimica et Biophysica Acta 67:104–137
    [Google Scholar]
  7. Fazel A. M., Jensen R. A. 1979; Aromatic aminotransferases in coryneform bacteria. Journal of Bacteriology 140:580–587
    [Google Scholar]
  8. Gelfand D. H., Steinberg R. A. 1977; Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. Journal of Bacteriology 130:429–440
    [Google Scholar]
  9. Hacking A. J., Hassall H. 1975; The purification and properties of l-histidine-2-oxoglutarate aminotransferase from Pseudomonas testosteroni. Biochemical Journal 147:327–334
    [Google Scholar]
  10. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces a Laboratory Manual Norwich, UK: John Innes Foundation;
    [Google Scholar]
  11. Jensen R. A., Calhoun D. F. 1981; Intracellular roles of microbial aminotransferases: overlap enzymes across different biochemical pathways. Critical Reviews in Microbiology 8:229–266
    [Google Scholar]
  12. Kamps H.-J. 1989 Untersuchungen zur Biosynthese von Nikkomycinen und zum Stoffwechsel von Streptomyces tendae PhD thesis Universität Münster, Germany:
    [Google Scholar]
  13. Kendrick K. E., Wheelis M. L. 1982; Histidine dissimilation in Streptomyces coelicolor. Journal of General Microbiology 1282029–2040
    [Google Scholar]
  14. Kradolfer P., Niederberger P., Hutter R. 1982; Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Archives of Microbiology 113:242–248
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  16. Lee C.-W., Desmazeaud M. J. 1985; Utilization of aromatic amino acids as nitrogen sources in Brevibacterium linens: an inducible aromatic amino acid aminotransferase. Archives of Microbiology 140:331–337
    [Google Scholar]
  17. Lewis Kittell B., Helinski D. R., Ditta G. S. 1989; Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. Journal of Bacteriology 171:5458–5466
    [Google Scholar]
  18. Lin E. C. C., Pitt B. M., Civen M., Knox W. E. 1958; The assay of aromatic amino acid transaminations and keto acid oxidation by the enol borate-tautomerase method. Journal of Biological Chemistry 233:668–673
    [Google Scholar]
  19. Paris C. G., Magasanik B. 1981a; Tryptophan metabolism in Klebsiella aerogenes: regulation of the utilization of aromatic amino acids as sources of nitrogen. Journal of Bacteriology 145:257–265
    [Google Scholar]
  20. Paris C. G., Magasanik B. 1981b; Purification and properties of aromatic aminotransferases from Klebsiella aerogenes. Journal of Bacteriology 145:266–271
    [Google Scholar]
  21. Perez-Galdona R., Corzo J., Leon-Barrios M. A., Gutierrez-Navarro A. M. 1992; Characterization of an aromatic amino acid aminotransferase from Rhizobium leguminosarum biovar trifolii. Biochemie 74:539–544
    [Google Scholar]
  22. Roos U., Mattern S., Schrempf H., Bormann C. 1992; Histidine aminotransferase activity in Streptomyces tendae and its correlation with nikkomycin production. FEMS Microbiology Letters 97:185–190
    [Google Scholar]
  23. Schmidt R.-M., Pape H. 1985; Biosynthesis of 4-formyl-4-imidazoline-2-one, the heterocyclic base of nikkomycin X. Zeitschrift für Naturforschung 41c:135–140
    [Google Scholar]
  24. Spolter P. D., Baldridge R. C. 1963; The metabolism of histidine. Journal of Biological Chemistry 238:2071–2074
    [Google Scholar]
  25. Weigent D. A., Nester E. W. 1976; Purification and properties of two aromatic aminotransferases in Bacillus subtilis. Journal of Biological Chemistry 251:6974–6980
    [Google Scholar]
  26. Whitaker R. J., Gaines C. G., Jensen R. A. 1982; A multispecific quintet of aromatic aminotransferases that overlap different bio-chemical pathways in Pseudomonas aeruginosa. Journal of Biological Chemistry 257:13550–13556
    [Google Scholar]
  27. Wickramasinghe R. H. 1969a; Studies on the histidine transaminating enzyme of Escherichia coli. Enzymologia 36:161–171
    [Google Scholar]
  28. Wickramasinghe R. H. 1969b; Repressible histidine transamination in Escherichia coli and its retro-inhibition. Enzymologia 37:91–96
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2773
Loading
/content/journal/micro/10.1099/00221287-139-11-2773
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error