1887

Abstract

Catabolism of isonicotinate by sp. INA1 has been shown to proceed via 2-hydroxyisonicotinate, 2,6-dihydroxyisonicotinate (citrazinate), citrazyl-CoA and 2,6-dioxopiperidine-4-carboxyl-CoA. An extended pathway involving propane-1,2,3-tricarboxylate as a further intermediate is presented in this paper. Propane-1,2,3-tricarboxylate was oxidized stepwise to 2-oxoglutarate involving an oxidase, aconitase and isocitrate dehydrogenase. Isonicotinate dehydrogenase catalyses the first step of isonicotinate metabolism in sp. INA1. The enzyme was purified to apparent homogeneity by a three-step procedure. Enrichment was accompanied by partial loss in specific activity. The native enzyme had a molecular mass of either 125 kDa or 250 kDa, when estimated by native gradient PAGE or gel filtration, respectively. SDS-gel electrophoresis revealed three types of subunits with molecular masses of approximately 83, 31 and 19 kDa. N-Terminal amino acid sequences of all three subunits have been determined. Molybdenum, iron, acid-labile sulphur and FAD were present at molar ratios of 1, 4, 4, 1 per protomer (125 kDa). The molybdenum-complexing cofactor was shown to be molybdopterin cytosine dinucleotide. Besides isonicotinate, only quinoline-4-carboxylate was found to be oxidized at appreciable rates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2763
1993-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2763.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2763&mimeType=html&fmt=ahah

References

  1. Aislabie J., Rothenburger S., Atlas R. M. 1989; Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions. Applied and Environmental Microbiology 55:3247–3249
    [Google Scholar]
  2. Amaya Y., Yamazaki K., Sato M., Noda K., Nushino T., Nishino T. 1990; Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. Journal of Biological Chemistry 265:14170–14175
    [Google Scholar]
  3. Bauer G., Lingens F. 1992; Microbial metabolism of quinoline and related compounds. XV. Quinoline-4-carboxylic acid oxido-reductase from Agrobacterium spec. 1B: a molybdenum-containing enzyme. Biological Chemistry Hoppe-Seyler 373:699–705
    [Google Scholar]
  4. Beinert H. 1983; Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Analytical Biochemistry 131:373–378
    [Google Scholar]
  5. Blaschke M., Kretzer A., Schåfer C., Nagel M., Andreesen J. R. 1991; Molybdenum-dependent degradation of quinoline by Pseudomonas putida Chin IK and other aerobic bacteria. Archives of Microbiology 155:164–169
    [Google Scholar]
  6. Block D. W., Lingens F. 1992; Microbial metabolism of quinoline and related compounds. XIII. Purification and properties of 1H-4-oxoquinoline monooxygenase from Pseudomonas putida strain 33/1. Biological Chemistry Hoppe-Seyler 373:249–254
    [Google Scholar]
  7. Blum H., Beer H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA, and DNA in polyacrylamide gels. Electrophoresis 8:93–99
    [Google Scholar]
  8. Börner G., Karrasch M., Thauer R. K. 1991; Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Letters 290:31–34
    [Google Scholar]
  9. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  10. Bray R. C. 1988; The inorganic biochemistry of molybdoenzymes. Quarterly Reviews of Biophysics 21:299–329
    [Google Scholar]
  11. Buddin W. 1914; Partial sterilisation of soil by volatile and non-volatile antiseptics. Journal of Agricultural Science 6:417–451
    [Google Scholar]
  12. Cleland W. W., Thompson V. W., Barden R. E. 1969; Isocitrate dehydrogenase (TPN-specific) from pig heart. Methods in Enzymology 13:30–33
    [Google Scholar]
  13. Copley S. D., Crooks G. P. 1992; Enzymic dehalogenation of 4-chlorobenzoyl coenzyme A in Acinetobacter sp. strain 4-CB1. Applied and Environmental Microbiology 58:1385–1387
    [Google Scholar]
  14. Coughlan M. P. 1980; Aldehyde oxidase, xanthine oxidase, and xanthine dehydrogenase: hydroxylases containing molybdenum, iron-sulfur, and flavin. In Molybdenum and Molybdenum-Containing Enzymes pp. 119–185 Coughlan M. P. Edited by Oxford: Pergamon Press;
    [Google Scholar]
  15. Coughlan M. P., Rajagopalan K. V., Handler P. 1969; The role of molybdenum in xanthine oxidase and related enzymes. Reactivity with cyanide, arsenite, and methanol. Journal of Biological Chemistry 244:2658–2663
    [Google Scholar]
  16. Coughlan M. P., Mehra R. K., Barber M. J., Siegel L. M. 1984; Optical and electron paramagnetic resonance spectrophotometric studies on purine hydroxylase II from Aspergillus nidulans. Archives of Biochemistry and Biophysics 229:311–316
    [Google Scholar]
  17. De Beyer A., Lingens F. 1993; Microbial metabolism of quinoline and related compounds. XVI. Quinaldine oxidoreductase from Arthrobacter spec. Rü 61a: a molybdenum-containing enzyme catalysing the hydroxylation at C-4 of the heterocycle. Biological Chemistry Hoppe-Seyler 374:101–109
    [Google Scholar]
  18. Elliott J. J., Brewer J. M. 1978; The inactivation of yeast enolase by 2,3-butanedione. Archives of Biochemistry and Biophysics 190:351–357
    [Google Scholar]
  19. Ensign J. C., Rittenberg S. C. 1965; The formation of a blue pigment in the bacterial oxidation of isonicotinic acid. Archiv für Mikrobiologie 51:384–392
    [Google Scholar]
  20. Fansler B., Lowenstein J. M. 1969; Aconitase from pig heart. Methods in Enzymology 13:26–30
    [Google Scholar]
  21. Freudenberg W., Koenig K., Andreesen J. R. 1988; Nicotine dehydrogenase from Anthrobacter oxydans: a molybdenum-containing hydroxylase. FEMS Microbiology Letters 52:13–17
    [Google Scholar]
  22. Grant D. J. W., Al-Najjar T. R. 1976; Degradation of quinoline by a soil bacterium. Microbios 15:177–189
    [Google Scholar]
  23. Gupta R. C., Shukla O. P. 1979a; Microbial transformation of isonicotinic acid hydrazide and isonicotinic acid by Sarcina sp. Journal of Bioscience 1:223–234
    [Google Scholar]
  24. Gupta R. C., Shukla O. P. 1979b; Isonicotinic and 2-hydroxyiso-nicotinic acid hydroxylases of Sarcina sp. Indian Journal of Biochemistry and Biophysics 16:72–75
    [Google Scholar]
  25. Hames B. D. 1981; An introduction to polyacrylamide gel electro-phoresis. In Gel Electrophoresis of Proteins. A Practical Approach pp. 1–91 Hames B. D., Rickwood D. Edited by Oxford: IRL Press;
    [Google Scholar]
  26. Hettrich D., Peschke B., Tshisuaka B., Lingens F. 1991; Microbial metabolism of quinoline and related compounds. X. The molybdenum cofactors of quinoline oxidoreductases from Pseudomonas putida 86 and Rhodococcus spec. B1 and of xanthine dehydrogenase from Pseudomonas putida 86. Biological Chemistry Hoppe-Seyler 372:513–517
    [Google Scholar]
  27. Hirschberg R., Ensign J. C. 1971; Oxidation of nicotinic acid by a Bacillus species: source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid. Journal of Bacteriology 108:757–759
    [Google Scholar]
  28. Hughes G. J., Frutiger S., Paquet N., Ravier F., Pasquali C., Sanchez J.-C., James R., Tissot J.-D., Bjellqvist B., Hoch-Strasser D. F. 1992; Plasma protein map: an update by microsequencing. Electrophoresis 13:707–714
    [Google Scholar]
  29. Hunt A. L., Hughes D. E., Lowenstein J. M. 1958; The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochemical Journal 69:170–173
    [Google Scholar]
  30. Johnson J. L., Rajagopalan K. V. 1982; Structural and metabolic relationship between the molybdenum cofactor and urothione. Proceedings of the National Academy of Sciences of the United States of America 79:6856–6860
    [Google Scholar]
  31. Johnson J. L., Rajagopalan K. V., Meyer O. 1990; Isolation and characterization of a second molybdopterin dinucleotide-molybdopterin cytosine dinucleotide. Archives of Biochemistry and Biophysics 283:542–545
    [Google Scholar]
  32. Koenig K., Andreesen J. R. 1990; Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition. Journal of Bacteriology 172:5999–6009
    [Google Scholar]
  33. Koziol J. 1971; Fluorometric analyses of riboflavin and its coenzymes. Methods in Enzymology 18B:253–285
    [Google Scholar]
  34. Kretzer A., Andreesen J. R. 1991; A new pathway for isonicotinate degradation by Mycobacterium sp. INA1. Journal of General Microbiology 137:1073–1080
    [Google Scholar]
  35. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  36. Lewis N. J., Hurt P., Sealy-Lewis H. M., Scazzocchio C. 1978; The genetic control of the molybdoflavoproteins in Aspergillus nidulans. IV. A comparison between purine hydroxylase I and II. European Journal of Biochemistry 91:311–316
    [Google Scholar]
  37. Löffler F., Müller R., Lingens F. 1992; Purification and properties of 4-halobenzoate-coenzyme A ligase from Pseudomonas sp. CBS3. Biological Chemistry Hoppe-Seyler 373:1001–1007
    [Google Scholar]
  38. Margolis J., Kenrick K. G. 1967; Polyacrylamide gel-electro-phoresis across a molecular sieve gradient. Nature; London: 2141334–1336
    [Google Scholar]
  39. Massey V., Edmondson D. 1970; On the mechanism of inactivation of xanthine oxidase by cyanide. Journal of Biological Chemistry 245:6595–6598
    [Google Scholar]
  40. Nagel M., Andreesen J. R. 1990; Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini. Archives of Microbiology 154:605–613
    [Google Scholar]
  41. Orpin C. G., Knight M., Evans W. C. 1972; The bacterial oxidation of N-methylisonicotinate, a photolytic product of paraquat. Biochemical Journal 127:833–844
    [Google Scholar]
  42. Pereira W. E., Rostad C. E., Leiker T. J., Updegraff D. M., Bennett J. L. 1988; Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water. Applied and Environmental Microbiology 54:827–829
    [Google Scholar]
  43. Peschke B., Lingens F. 1991; Microbial metabolism of quinoline and related compounds. XII. Isolation and characterization of the quinoline oxidoreductase from Rhodococcus spec. B1 compared with the quinoline oxidoreductase from Pseudomonas putida 86. Biological Chemistry Hoppe-Seyler 372:1081–1088
    [Google Scholar]
  44. Rienhöfer A. 1985 Strukturelle und immunologische Untersuchungen zur Xanthin-Dehydrogenase aus Butyribacterium barkeri, ein Seleno-Molybdo-Eisen-Schwefel-Flavoprotein Thesis: University of Göttingen;
    [Google Scholar]
  45. Schach S., Schwartz G., Fetzner S., Lingens F. 1993; Microbial metabolism of quinoline and related compounds. XVII. Degradation of 3-methylquinoline by Comamonas testosteroni 63. Biological Chemistry Hoppe-Seyler 374:175–181
    [Google Scholar]
  46. Scopes R. K. 1974; Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry 59:277–282
    [Google Scholar]
  47. Sharma M. L., Shukla O. P. 1987; Microbial transformation of isoniazid and isonicotinic acid by soil bacteria. Biological Memoires 13:1–17
    [Google Scholar]
  48. Shukla O. P. 1984; Microbial transformation of pyridine derivatives. Journal of Scientific and Industrial Research 43:98–116
    [Google Scholar]
  49. Sims G. K., O’loughlin E. J. 1989; Degradation of pyridines in the environment. Critical Reviews in Environmental Control 19:309–340
    [Google Scholar]
  50. Singh R. P., Shukla O. P. 1986; Isolation, characterization, and metabolic activities of Bacillus brevis degrading isonicotinic acid. Journal of Fermentation Technology 64:109–117
    [Google Scholar]
  51. Van de Bogart M., Beinert H. 1967; Micro methods for the quantitative determination of iron and copper in biological material. Analytical Biochemistry 20:325–334
    [Google Scholar]
  52. Watson G. K., Cain R. B. 1975; Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Biochemical Journal 146:157–172
    [Google Scholar]
  53. Wootton J. C., Nicholson R. E., Cock J. M., Walters D. E., Burke J. F., Doyle W. A., Bray R. C. 1991; Enzymes depending on the pterin molybdenum cofactor-sequence families, spectroscopic properties of molybdenum and possible cofactorbinding domains. Biochimica et Biophysica Acta 1057:157–185
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2763
Loading
/content/journal/micro/10.1099/00221287-139-11-2763
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error