1887

Abstract

The mobilizable plasmid pMD101 () was constructed by inserting cloned , the structural gene for the chromosomal AmpC β-lactamase of , and the closely linked encoding the transcriptional regulator essential for enzyme induction, into the broad host-range plasmid pKT231. Plasmid pMD101 was transconjugated into VI and its isogenic, cell-wall-less protoplast L-form LVI. AmpC β-lactamase was expressed constitutively from cloned and in bacteria and in some L-form protoplasts. However, induction of the enzyme by β-lactam antibiotics occurred only in bacterial cells and not in the cell-wall- and peptidoglycan-deficient L-form. In agreement with current models, induction of AmpC β-lactamase is thought to be initiated by an induction signal arising from the metabolic disturbance of cell-wall peptidoglycan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2715
1993-11-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2715.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2715&mimeType=html&fmt=ahah

References

  1. Bagdasarian M., Lurz R., Rückert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific purpose plasmid cloning vectors II. Broad host range, high copy number, RSF1010-derived vectors, and a host vector system for gene cloning in Pseudomonas. Gene 16:237–247
    [Google Scholar]
  2. Bergström S., Lindberg F., Olson O., Normark S. 1983; Comparison of the overlapping frd and ampC operons of Escherichia coli with the corresponding DNA sequences in other Gram-negative bacteria. Journal of Bacteriology 155:1297–1305
    [Google Scholar]
  3. Everett M. J., Chopra I., Bennett P. M. 1990; Induction of the Citrobacter freundii Group I β-lactamase in Escherichia coli is not dependent on entry of β-lactam into the cytoplasm. Antimicrobial Agents and Chemotherapy 34:2429–2430
    [Google Scholar]
  4. Gatus B. J., Bell S. M., Jimenez A. S. 1986; Comparison of glycine enhancement with cefoxitin induction of β-lactamase production in Enterobacter cloacae ATCC 13047. Journal of Antimicrobial Chemotherapy 21:163–170
    [Google Scholar]
  5. Gootz T. D., Sanders C. C. 1983; Characterization of β-lactamase induction in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 23:91–97
    [Google Scholar]
  6. Grabow W. O. K., Smit J. A. 1967; Methionine synthesis in Proteus mirabilis. Journal of General Microbiology 46:47–57
    [Google Scholar]
  7. Hammes W., Schleifer K. H., Kandler O. 1973; Mode of action of glycine on the biosynthesis of peptidoglycan. Journal of Bacteriology 116:1029–1053
    [Google Scholar]
  8. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  9. Hofschneider P. H., Martin H. H. 1968; Diversity of surface layers in L-forms of Proteus mirabilis. Journal of General Microbiology 51:23–33
    [Google Scholar]
  10. Honoré N., Nicolas M. H., Cole S. T. 1986; Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO Journal 5:3709–3714
    [Google Scholar]
  11. Honoré N., Nicolas M. H., Cole S. T. 1989; Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory transducer. Molecular Microbiology 3:1121–1130
    [Google Scholar]
  12. Huber K. 1985 Quantitative Bewertung der Funktion von Penicillin-bindeproteinen an der Sphäroplasten-L-Form von Proteus mirabilis nach Einwirkung verschiedener Klassen von β-Laktam-Antibiotika PhD thesis Technische Hochschule Darmstadt, Germany:
    [Google Scholar]
  13. Huber K., Martin H. H. 1986; State of peptidoglycan in spheroplasts of Proteus mirabilis grown in the presence of different β-lactam antibiotics. In Biological Properties of Peptidoglycan pp. 187–190 Seidl P. H., Schleifer K. H. Edited by Berlin, New York: Walter de Gruyter;
    [Google Scholar]
  14. Jaurin B., Grundström T. 1981; ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proceedings of the National Academy of Sciences of the United States of America 78:4897–4901
    [Google Scholar]
  15. Klessen C., Schmidt K. H., Gumpert J., Grosse H. H., Malke H. 1989; Complete secretion of activable bovine prochymosin by genetically engineered L-forms of Proteus mirabilis. Applied and Environmental Microbiology 55:1009–1015
    [Google Scholar]
  16. Korfmann G., Sanders C. C. 1989; ampG is essential for high level expression of AmpC β-lactamase in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 33:1946–1951
    [Google Scholar]
  17. Kroll H. P., Gmeiner J. 1980; Membranes of the protoplast L-form of Proteus mirabilis. Archives of Microbiology 127:223–229
    [Google Scholar]
  18. Lindberg F., Normark S. 1987; Common mechanism of ampC β-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 β-lactamase gene. Journal of Bacteriology 169:758–763
    [Google Scholar]
  19. Lindberg F., Westman L., Normark S. 1985; Regulatory components in Citrobacter freundii ampC β-lactamase induction. Proceedings of the National Academy of Sciences of the United States of America 82:4620–4624
    [Google Scholar]
  20. Lindberg F., Lindquist S., Normark S. 1987; Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii β-lactamase. Journal of Bacteriology 169:1923–1928
    [Google Scholar]
  21. Lindberg F., Lindquist S., Normark S. 1988; Genetic basis of induction and overproduction of chromosomal class I β-lactamase in non-fastidious Gram-negative bacilli. Reviews of Infectious Diseases 10:782–785
    [Google Scholar]
  22. Lindquist S., Lindberg F., Normark S. 1980a; Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC βlactamase gene. Journal of Bacteriolog 171:3746–3753
    [Google Scholar]
  23. Lindquist S., Galleni M., Lindberg F., Normark S. 1989b; Signalling proteins in enterobacterial AmpC β-lactamase regulation. Molecular Microbiology 3:1091–1102
    [Google Scholar]
  24. Lindquist S., Weston-Hafer K., Schmidt H., Piel C., Korfmann G., Erickson J., Sanders C., Martin H. H., Normark S. 1993; AmpG, a signal transducer in chromosomal β-lactamase induction. Molecular Microbiology 9:703–715
    [Google Scholar]
  25. Low B. K. 1973; Rapid mapping of conditional and auxotrophic mutants in Escherichia coli K12. Journal of Bacteriology 113:798–812
    [Google Scholar]
  26. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  27. Martin H. H. 1964; Composition of the mucopolymer in the cell walls of the unstable and stable L-forms of Proteus mirabilis. Journal of General Microbiology 36:441–450
    [Google Scholar]
  28. Martin H. H. 1983; Protoplasts and spheroplasts of Gram-negative bacteria, with special emphasis on Proteus mirabilis. In Protoplasts 1983, Lecture Proceeding Experientia Supplementum 46 pp. 213–225 Potrykus I., Harms C. T., Hinnen A., Hütter R., King P. J., Shillito R. D. Edited by Basel: Birkhäuser Verlag;
    [Google Scholar]
  29. Martin H. H., Gmeiner J. 1979; Modification of peptidoglycan structure by penicillin action in cell walls of Proteus mirabilis. European Journal of Biochemistry 95:487–495
    [Google Scholar]
  30. Martin H. H., Schmidt H. 1993; Disturbance of peptidoglycan synthesis by glycine and d-methionine creates a signal for the ampG-mediated induction of AmpC-β-lactamase in Escherichia coli. In Bacterial Growth and Lysis - Metabolism and Structure of the Bacterial Sacculus pp. 341–346 de Pedro M. A., Höltje J. V., Löffelhardt W. Edited by New York: Plenum Publishing Co;
    [Google Scholar]
  31. Martin H. H., Maskos C., Burger R. 1975; d-Alanyl-d-alanine carboxypeptidase in the bacterial form and L-form of Proteus mirabilis. European Journal of Biochemistry 55:465–473
    [Google Scholar]
  32. Martin H. H., Schilf W., Schiefer H. G. 1980; Differentiation of Mycoplasmatales from bacterial protoplast L-forms by assay for penicillin-binding proteins. Archives of Microbiology 127:297–299
    [Google Scholar]
  33. Martin H. H., Schmidt B., Bräutigam S., Noguchi H., Matsuhashi M. 1988; Initiation of induction of chromosomal β-lactamase by binding of inducing β-lactam antibiotics to low molecular weight penicillin-binding proteins. In Antibiotic Inhibition of Bacterial Cell Surface and Assembly pp. 494–501 Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Merrick M. J., Gibbins J. R., Postgate J. R. 1987; A rapid and efficient method for plasmid transformation of Klebsiella pneumoniaeand Escherichia coli. Journal of General Microbiology 133:2053–2057
    [Google Scholar]
  35. Naylor P. G. D. 1964; The effect of electrolytes or carbohydrates in a sodium chloride deficient medium on the formation of discrete colonies of Proteus and the influence of these substances on growth in liquid culture. Journal of Applied Bacteriology 27:422–431
    [Google Scholar]
  36. Ottolenghi A. C. 1993; In Enterobacter cloacae alterations induced by glycine and d-amino acids in the composition and structure of peptidoglycan are accompanied by induction of chromosomal β-lactamase. A model involving ftsZ and septation. In Bacterial Growth and Lysi-Metabolism and Structure of the Bacterial Sacculus pp. 347–354 de Pedro M. A., Höltje J. V., Löffelhardt W. Edited by New York: Plenum Publishing Co;
    [Google Scholar]
  37. Rousset A., Nguyen-Disteche M., Minck R., Ghuysen J. M. 1982; Penicillin-binding proteins and carboxypeptidase/transpeptidase activities in Proteus vulgaris P18 and its penicillin-induced stable L-forms. Journal of Bacteriology 152:1042–1048
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schmidt H. 1991 Defektmutationen im Schlüsselgen ampG der β-Laktamase-Induktion bei Escherichia coli - Kartierung, Klonierung und Sequenzierung von Mutantengenen PhD thesis Technische Hochschule Darmstadt, Germany:
    [Google Scholar]
  40. Simon R. 1989; High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Molecular and General Genetics 196:413–420
    [Google Scholar]
  41. Smith J. T. 1969; R-factor gene expression in Gram-negative bacteria. Journal of General Microbiology 55:109–120
    [Google Scholar]
  42. Sykes R. B., Smith J. T. 1979; Biochemical aspects of β-lactamases from Gram-negative organisms. In Beta-Lactamases pp. 369–401 Hamilton-Miller J. M. T., Smith J. T. Edited by London: Academic Press;
    [Google Scholar]
  43. Taubeneck U. 1962a; Untersuchungen über die L-Form von Proteus mirabilis Hauser. I. Die penicillin-induzierten large bodies (Sphäro-plasten) und ihre Bedeutung für die Entstehung der L-Form. Zeitschrift für AUgemeine Mikrobiologie 2:56–76
    [Google Scholar]
  44. Taubeneck U. 1962b; Untersuchungen über die L-Form von Proteus mirabilis Hauser. II. Entwicklung und Wesen der L-Form. Zeitschrift für Allgemeine Mikrobiologie 2:132–156
    [Google Scholar]
  45. Trippen B., Hammes W., Schleifer K. H., Kandler O. 1976; Die Wirkung von d-Aminosäuren auf die Struktur und Biosynthese des Peptidoglycans. Archives of Microbiology 109:247–26
    [Google Scholar]
  46. Tuomanen E., Lindquist S., Sande M., Galleni M., Light K., Gage D., Normark S. 1991; Coordinate regulation of β-lactamase induction and peptidoglycan composition by the amp operon. Science 251:201–204
    [Google Scholar]
  47. Ward J. B. 1975; Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis. Journal of Bacteriology 124:668–678
    [Google Scholar]
  48. Wirth R., Friesenegger A., Fiedler S. 1989; Transformation of various species of Gram-negative bacteria belonging to 11 different genera by electroporation. Molecular and General Genetics 216:175–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2715
Loading
/content/journal/micro/10.1099/00221287-139-11-2715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error