Dimensional rearrangement of B/r cells during a nutritional shift-down Free

Abstract

In a search for the mechanism underlying dimensional changes in bacteria, the glucose analogue methyl α--glucoside was used to effect a rapid reduction in the mass growth rate of by competitively inhibiting glucose uptake, a so-called nutritional shift-down. The new steady-state cell mass and volume were reached after 1 h, during which the rate of cell division was maintained; rearrangement of the linear dimensions (cell length, diameter), however, required an additional 2 h and caused an undershoot in cell length, consistent with the view that is slow to modify its diameter. The results are compared with the overshoot in cell length that occurs following nutritional shift-up.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2711
1993-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2711.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2711&mimeType=html&fmt=ahah

References

  1. Cooper S. 1988; Rate and topography of cell wall synthesis during the division cycle of Salmonella typhimurium. Journal of Bacteriology 170:422–430
    [Google Scholar]
  2. Cooper S. 1989; The constrained hoop: an explanation of the overshoot in cell length during a shift-up of Escherichia coli. Journal of Bacteriology 171:5239–5243
    [Google Scholar]
  3. Donachie W. D. 1968; Relationship between cell size and time of initiation of DNA replication. Nature; London: 219100–104
    [Google Scholar]
  4. Grover N. B., Zaritsky A., Woldringh C. L., Rosenberger R. F. 1980; Dimensional rearrangement of rod-shaped bacteria following nutritional shift-up. I. Theory. Journal of Theoretical Biology 86:421–439
    [Google Scholar]
  5. Hansen M. T., Pato M. L., Molin S., Fiil N. F., Von Meyen-Burg K. 1975; Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. Journal of Bacteriology 122:585–591
    [Google Scholar]
  6. Helmstetter C. E. 1967; Rate of DNA synthesis during the division cycle of Escherichia coli. Journal of Molecular Biology 24:417–427
    [Google Scholar]
  7. Helmstetter C. E., Leonard A. C. 1990; Involvement of cell shape in the replication and segregation of chromosomes in Escherichia coli. Research in Microbiology 141:30–39
    [Google Scholar]
  8. Helmstetter C. E., Cooper S., Pierucci O., Revelas L. 1968; The bacterial life sequence. Cold Spring Harbor Symposia on Quantitative Biology 33:809–822
    [Google Scholar]
  9. Huls P. G., Nanninga N., Van Spronsen E. A., Valkenburg J. A. C., Vischer N. O. E., Woldringh C. L. 1992; A computer-aided measuring system for the characterization of yeast populations combining 2D-image analysis, electronic particle counter, and flow cytometry. Biotechnology and Bioengineering 39:343–350
    [Google Scholar]
  10. Johnsen K. S., Molin S., Karlström O., Maaløe O. 1977; Control of protein synthesis in Escherichia coli: analysis of an energy source shift-down. Journal of Bacteriology 131:18–29
    [Google Scholar]
  11. Kessler D. P., Rickenberg H. V. 1963; The competitive inhibition of μ-methylglucoside uptake in Escherichia coli. Biochemical and Biophysical Research Communications 10:482–487
    [Google Scholar]
  12. Kjeldgaard N. O., Maaløe O., Schaechter M. 1958; The transition between different physiological states during balanced growth of Salmonella typhimurium. Journal of General Microbiology 19:607–616
    [Google Scholar]
  13. Kubitschek H. E., Friske J. A. 1986; Determination of bacterial volume with the coulter counter. Journal of Bacteriology 168:1466–1467
    [Google Scholar]
  14. Kubitschek H. E., Baldwin W. W., Schroeter S. J., Graetzer R. 1984; Independence of buoyant cell density and growth rate in Escherichia coli. Journal of Bacteriology 158:296–299
    [Google Scholar]
  15. Marr A. G., Harvey R. J., Trentini W. C. 1966; Growth and division of Escherichia coli. Journal of Bacteriology 91:2388–2389
    [Google Scholar]
  16. Molin S., Von Meyenburg K., Maaløe O., Hansen M. T., Pato M. L. 1977; Control of ribosome synthesis in Escherichia coli : analysis of an energy source shift-down. Journal of Bacteriology 131:7–17
    [Google Scholar]
  17. Pritchard R. H., Barth P. T., Collins J. 1969; Control of DNA synthesis in bacteria. Symposia of the Society for General Microbiology 19:263–297
    [Google Scholar]
  18. Rosenberger R. F., Grover N. B., Zaritsky A., Woldringh C. L. 1978; Surface growth in rod-shaped bacteria. Journal of Theoretical Biology 73:711–721
    [Google Scholar]
  19. Schaechter M., Maaløe O., Kjeldgaard N. O. 1958; Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. Journal of General Microbiology 19:592–606
    [Google Scholar]
  20. Woldringh C. L., De Jong M. A., Van Den Berg W., Koppes L. 1977; Morphological analysis of the division cycle of two Escherichia coli B/r substrains during slow growth. Journal of Bacteriology 131:270–279
    [Google Scholar]
  21. Woldringh C. L., Grover N. B., Rosenberger R. F., Zaritsky A. 1980; Dimensional rearrangement of rod-shaped bacteria following nutritional shift-up. II. Experiments with Escherichia coli B/r. Journal of Theoretical Biology 86:441–454
    [Google Scholar]
  22. Woldringh C. L., Huls P., Pas E., Brakenhoff G. J., Nanninga N. 1987; Topography of peptidoglycan synthesis during elongation and polar cap formation in a cell division mutant of Escherichia coli MC4100. Journal of General Microbiology 133:575–586
    [Google Scholar]
  23. Woldringh C. L., Mulder E., Valkenburg J. A. C., Wientjes F. B., Zaritsky A., Nanninga N. 1990; Role of the nucleoid in the toporegulation of division. Research in Microbiology 141:39–49
    [Google Scholar]
  24. Zaritsky A. 1975; On dimensional determination of rod-shaped bacteria. Journal of Theoretical Biology 54:243–248
    [Google Scholar]
  25. Zaritsky A., Helmstetter C. E. 1992; Rate maintenance of cell division in Escherichia coli B/r: analysis of a simple nutritional shift-down. Journal of Bacteriology 174:8152–8155
    [Google Scholar]
  26. Zaritsky A., Grover N. B., Naaman J., Woldringh C. L., Rosenberger R. F. 1982; Growth and form in bacteria. Comments on Molecular and Cellular Biophysics 1:237–260
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2711
Loading
/content/journal/micro/10.1099/00221287-139-11-2711
Loading

Data & Media loading...

Most cited Most Cited RSS feed