The gene region of is required for post-translational regulation of both the molybdenum and the alternative nitrogenase Free

Abstract

Synthetic oligonucleotides, which were designed according to amino acid sequences conserved between and DraT and DraG, respectively, were used to identify the corresponding genes of Sequence analysis of a 1904 bp DNA fragment proved the existence of and These two genes were separated by 11 bp only, suggesting that and were part of one transcriptional unit. In contrast to and , the genes were not located upstream of the structural genes of nitrogenase but close to the gene at a distance of about 1000 kb from the genes. Deletion mutations in the gene region were constructed and introduced into wild-type and a deletion strain. The resulting mutant strains were examined for post-translational regulation of the molybdenum and the alternative nitrogenase in response to ammonia and darkness. Under ‘switch-off’ conditions the modified (ADP-ribosylated) and the non-modified forms of component II of both the molybdenum and the alternative nitrogenase were detected in a wild-type background by immunoblot analysis, whereas only the non-modified forms were present in the deletion strains. Nitrogenase activity in these strains was followed by the acetylene reduction assay. In contrast to the wild-type, mutants were not affected in nitrogenase activity in response to ammonia or darkness. These results demonstrated that the genes are required for post-translational regulation of both the molybdenum and the heterometal-free nitrogenase in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2667
1993-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2667.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2667&mimeType=html&fmt=ahah

References

  1. Arnold W., Pü;hler A. 1988; A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70:171–179
    [Google Scholar]
  2. Dingler C., Kuhla J., Wassink H., Oelze J. 1988; Levels and activities of nitrogenase proteins inAzotobacter vinelandii grown at different dissolved oxygen concentrations. Journal of Bacteriology 170:2148–2152
    [Google Scholar]
  3. Fitzmaurice W. P., Saari L. L., Lowery R. G., Ludden P. W., Roberts G. P. 1989; Genes coding for the reversible ADP- ribosylation system of dinitrogenase reductase fromRhodospirillum rubrum. Molecular and General Genetics 218:340–347
    [Google Scholar]
  4. Fonstein M., Zheng S., Haselkorn R. 1992; Physical map of the genome ofRhodobacter capsulatus SB 1003. Journal of Bacteriology 174:4070–4077
    [Google Scholar]
  5. Fu H., Burris R. H., Roberts G. P. 1990a; Reversible ADP- ribosylation is demonstrated to be a regulatory mechanism in prokaryotes by heterologous expression. Proceedings of the National Academy of Sciences of the United States of America 87:1720–1724
    [Google Scholar]
  6. Fu H.-A., Fitzmaurice W. P., Roberts G. P., Burris R. H. 1990b; Cloning and expression ofdraTG genes fromAzospirillum lipoferum. Gene 86:95–98
    [Google Scholar]
  7. Gollan U., Schneider K., Mü;ller A., Schü;ddekopf K., Klipp W. 1993; Detection of thein vivo incorporation of a metal cluster into a protein: the FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase ofRhodobacter capsulatus. European Journal of Biochemistry 215:25–35
    [Google Scholar]
  8. Gussin G. N., Ronson C. W., Ausubel F. M. 1986; Regulation of nitrogen fixation genes. Annual Reviews of Genetics 20:567–591
    [Google Scholar]
  9. Hallenbeck P. C. 1992; Mutations affecting nitrogenase switch-off in Rhodobacter capsulatus. Biochimica et Biophysica Acta 1118:161–168
    [Google Scholar]
  10. Hennecke H. 1990; Nitrogen fixation genes involved in theBradyrhizobium japonicum-soybean symbiosis. FEBS Letters 268:422–426
    [Google Scholar]
  11. Hirsch P. R., Beringer J. E. 1984; A physical map of pPHIJI and pJB4JI. Plasmid 12:139–141
    [Google Scholar]
  12. Joerger R. D., Jacobson M. R., Premakumar R., Wolfinger E. D., Bishop P. E. 1989; Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase fromAzotobacter vinelandii. Journal of Bacteriology 171:1075–1086
    [Google Scholar]
  13. Jouanneau Y., Roby C., Meyer C. M., Vignais P. M. 1989; ADP-ribosylation of dinitrogenase reductase inRhodobacter capsulatus. Biochemistry 28:6524–6530
    [Google Scholar]
  14. Klipp W., Masepohl B., Pü;hler A. 1988; Identification and mapping of nitrogen fixation genes ofRhodobacter capsulatus:duplication of anifA-nifB region. Journal of Bacteriology 170:693–699
    [Google Scholar]
  15. Kranz R. G., Foster-Hartnett D. 1990; Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors. Molecular Microbiology 4:1793–1800
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature: London; 227680–685
    [Google Scholar]
  17. Lehman L. J., Roberts G. P. 1991a; Identification of an alternative nitrogenase system inRhodospirillum rubrum. Journal of Bacteriology 173:5705–5711
    [Google Scholar]
  18. Lehman L. J., Roberts G. P. 1991b; Glycine 100 in the dinitrogenase reductase ofRhodospirillum rubrum is required for nitrogen fixation but not for ADP-ribosylation. Journal of Bacteriology 173:6159–6161
    [Google Scholar]
  19. Liang J., Nielsen G. M., Lies D. P., Burris R. H., Roberts G. P., Ludden P. W. 1991; Mutations in thedraT anddraG genes ofRhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. Journal of Bacteriology 173:6903–6909
    [Google Scholar]
  20. Lowery R. G., Saari L. L., Ludden P. W. 1986; Reversible regulation of the nitrogenase iron protein fromRhodospirillum rubrum by ADP-ribosylation in vitro. Journal of Bacteriology 166:513–518
    [Google Scholar]
  21. Lowery R. G., Ludden P. W. 1988; Purification and properties of dinitrogenase reductase ADP-ribosyltransferase from the photosynthetic bacteriumRhodospirillum rubrum. . Journal of Biological Chemistry 263:16714–16719
    [Google Scholar]
  22. Masepohl B., Klipp W., Pühler A. 1988; Genetic characterization and sequence analysis of the duplicatednifA/nifB gene region ofRhodobacter capsulatus. Molecular and General Genetics 212:27–37
    [Google Scholar]
  23. Masepohl B., Angermüller S., Hennecke S., Hübner P., Moreno-Vivian C., Klipp W. 1993; Nucleotide sequence and genetic analysis of theRhodobacter capsulatus ORF6-nifU1SVW gene region: possible role of NifW in homocitrate processing. Molecular and General Genetics 238:369–382
    [Google Scholar]
  24. Moreno-Vivian C., Hennecke S., Pühler A., Klipp W. 1989a; Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, andnifQ are cotranscribed withnifE, nifN, nifX, and ORF4 inRhodobacter capsulatus. . Journal of Bacteriology 171:2591–2598
    [Google Scholar]
  25. Moreno-Vivian C., Schmehl M., Masepohl B., Arnold W., KLIPP W. 1989b; DNA sequence and genetic analysis of theRhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor. Molecular and General Genetics 216:353–363
    [Google Scholar]
  26. Pierrard J., Ludden P. W., Roberts G. P. 1993; Posttranslational regulation of nitrogenase inRhodobacter capsulatus: existence of two independent regulatory effects of ammonium. Journal of Bacteriology 175:1358–1366
    [Google Scholar]
  27. Pope M. R., Murrell S. A., Ludden P. W. 1985; Covalent modification of the iron protein of nitrogenase fromRhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue. Proceedings of the National Academy of Sciences of the United States of America 82:3173–3177
    [Google Scholar]
  28. Robson R., Woodley P., Jones R. 1986; Second gene (nifH*) coding for a nitrogenase iron protein inAzotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. EMBO Journal 5:1159–1163
    [Google Scholar]
  29. Saari L. L., Pope M. R., Murrell S. A., Ludden P. W. 1986; Studies on the activating enzyme for iron protein of nitrogenase fromRhodospirillum rubrum. . Journal of Biological Chemistry 261: 4973–4977
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  32. Schneider K., Müller A., Johannes K.-U., Diemann E., Kottmann J. 1991a; Selective removal of molybdenum traces from growth media of N2-fixing bacteria. Analytical Biochemistry 193:292–298
    [Google Scholar]
  33. Schneider K., Müller A., Schramm U., KLIPP W. 1991b; Demonstration of a molybdenum- and vanadium-independent nitrogenase in anifHD K-deletion mutant ofRhodobacter capsulatus. European Journal of Biochemistry 195:653–661
    [Google Scholar]
  34. Schüddekopf K., Hennecke S., Liese U., Kutsche M., Klipp W. 1993; Characterization ofanf genes specific for the alternative nitrogenase and identification ofnif genes required for both nitrogenases inRhodobacter capsulatus. Molecular Microbiology 8:673–684
    [Google Scholar]
  35. Shaw J. G., Hamblin M. J., Kelly D. J. 1991; Purification, characterization and nucleotide sequence of the periplasmic C4- dicarboxylate-binding protein (DctP) fromRhodobacter capsulatus. Molecular Microbiology 5:3055–3062
    [Google Scholar]
  36. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system forin vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791
    [Google Scholar]
  37. Stormo G. D., Schneider T. D., Gold L. M. 1982; Characterization of translational initiation sites inE. coli. Nucleic Acids Research 10:2971–2996
    [Google Scholar]
  38. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7- derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  39. Wolle D., Kim C., Dean D., Howard J. B. 1992; Ionic interactions in the nitrogenase complex. Properties of Fe-protein containing substitutions for Arg-100. Journal of Biological Chemistry 267:3667–3673
    [Google Scholar]
  40. Zhang Y., Burris R. H., Roberts G. P. 1992; Cloning, sequencing, mutagenesis, and functional characterization ofdraTanddraG genes fromAzospirillum brasilense. Journal of Bacteriology 174:3364–3369
    [Google Scholar]
  41. Zumft W. G., Castillo F. 1978; Regulatory properties of the nitrogenase fromRhodopseudomonas palustris. Archives of Micro-biology 117:53–60
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2667
Loading
/content/journal/micro/10.1099/00221287-139-11-2667
Loading

Data & Media loading...

Most cited Most Cited RSS feed