Genetic structure of populations: a non-clonal pathogen Free

Abstract

Reproduction by binary fission generates a clonal genetic structure in bacterial populations in the absence of a high rate of recombination. The extent of recombination in natural populations of was determined from an analysis of electrophoretically demonstrable allelic variation at structural genes encoding nine enzyme loci in 227 worldwide isolates. No significant linkage disequilibrium was evident in the population, indicating that recombination must be frequent, relative to binary fission. The genetic structure of was compared with that of from an earlier study. Linkage disequilibrium was less extreme in the population than in the local population of , in which only modest clonal structure was evident. Thus, , unlike pathogens so far examined, has a non-clonal population structure. As expected in a freely recombining population, no correlation was found between electrophoretic genotype and serovar or auxotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2603
1993-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2603.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2603&mimeType=html&fmt=ahah

References

  1. Achtman M., Pluschke G. 1986; Clonal analysis of descent and virulence among selected Escherichia coli. Annual Review of Microbiology 40:185–210
    [Google Scholar]
  2. Barcak G. J., Wolf R. E. Jr 1988; Comparative nucleotide sequence analysis of growth-rate regulated gnd alleles from natural isolates of Escherichia coli and from Salmonella typhimurium LT-2. Journal of Bacteriology 170:372–379
    [Google Scholar]
  3. Bihlmaier A., Romling U., Meyer T. F., Tummler B., Gibbs C. P. 1991; Physical and genetic map of the Neisseria gonorrhoeae strain MS11-N198 chromosome. Molecular Microbiology 5:2529–2539
    [Google Scholar]
  4. Biswas G. D., Graves J. F., Sox T. F., Tenover F. C., Sparling P. F. 1982; Marker rescue by a homologous recipient plasmid during transformation of gonococci by a hybrid Pcrplasmid. Journal of Bacteriology 151:77–82
    [Google Scholar]
  5. Biswas G. D., Thompson S. A., Sparling P. F. 1989; Gene transfer in Neisseria gonorrhoeae. Clinical Microbiology Reviews 2: suppl. S24–S28
    [Google Scholar]
  6. Caugant D. A., Levin B. R., Selander R. K. 1981; Genetic diversity and temporal variation in the E. coli population of a human host. Genetics 98:467–490
    [Google Scholar]
  7. Caugant D. A., Bovre K., Gaustad R., Bryn K., Holten E., Høiby E. A., Frøholm L. O. 1986; Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. Journal of General Microbiology 132:641–652
    [Google Scholar]
  8. Caugant D. A., Mocca L. F., Frasch C. E., Frøholm L. O., Zollinger W. A., Selander R. K. 1987; Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype and outer membrane protein pattern. Journal of Bacteriology 169:2781–2792
    [Google Scholar]
  9. Caugant D. A., Bol P., Høiby E. A., Zanen H. C., Frøholm L. O. 1990; Clones of serogroup B Neisseria meningitidis causing systemic disease in the Netherlands, 1958-1986. Journal of Infectious Disease 162:867–874
    [Google Scholar]
  10. CEntres For Disease Control 1992 Morbidity Mortality Weekly 40893 Atlanta, GA: CDC;
    [Google Scholar]
  11. Copley C. G., Egglestone S. I. 1983; Auxotypes of Neisseria gonorrhoeae isolated in the United Kingdom. Journal of Medical Microbiology 16:295–302
    [Google Scholar]
  12. Dykhuizen D. E., Green L. 1991; Recombination in Escherichia coli and the definition of a biological species. Journal of Bacteriology 173:7257–7268
    [Google Scholar]
  13. Falk E. S., Bjorvatin B., Danielsson D., Kristiansen B.-E., Melby K., Sorensen B. 1984; Restriction endonuclease fingerprinting of chromosomal DNA of Neisseria gonorrhoeae. Acta Pathologica, Microbiologica et Immunologica Scandinavia B92:271–278
    [Google Scholar]
  14. Feavers I. M., Heath A. B., Bygraves J. A., Maiden M. C. J. 1992; Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Molecular Microbiology 6:489–495
    [Google Scholar]
  15. Gargallo-Viola D. 1989; Enzyme polymorphism, prodigiosin production and plasmid fingerprints in clinical and naturally occurring isolates of Serratia marcesens. Journal of Clinical Microbiology 27:860–868
    [Google Scholar]
  16. Istock C. A., Duncan K. E., Ferguson N., Zhou X. 1992; Sexuality in a natural population of bacteria -Bacillus subtilis challenges the clonal paradigm. Molecular Ecology 1:95–103
    [Google Scholar]
  17. Knapp J. S., Tam M. R., Nowinski R. C., Holmes K. K., Sandstrom E. G. 1984; Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I. Journal of Infectious Diseases 150:44–48
    [Google Scholar]
  18. Levin B. R. 1981; Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99:1–23
    [Google Scholar]
  19. Maynard Smith J., Dowson C. G., Spratt B. G. 1991; Localized sex in bacteria. Nature; London: 34929–31
    [Google Scholar]
  20. Maynard Smith J., Smith N. H., O’Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proceedings of the National Academy of Sciences of the United States of America 90:4384–4388
    [Google Scholar]
  21. Milkman R., Bridges M. M. 1990; Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505–517
    [Google Scholar]
  22. Musser J. M., Bemis D. A., Ishikawa H., Selander R. K. 1987; Clonal diversity and host distribution in Bordetella bronchiseptica. Journal of Bacteriology 169:2793–2803
    [Google Scholar]
  23. Musser J. M., Kroll J. S., Moxon E. R., Selander R. K. 1988; Evolutionary genetics of the encapsulated strains of Haemophilus influenzae. Proceedings of the National Academy of Sciences of the United States of America 85:7758–7762
    [Google Scholar]
  24. Norusis M. J. 1986; SPSS/PC+ Advanced statistics for the IBM PC/XT/AT. Chicago, IL: SPSS;
    [Google Scholar]
  25. Ochman H., Selander R. K. 1984; Evidence for clonal population structure in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 81:198–201
    [Google Scholar]
  26. Piffaretti J. C., Kressebuch H., Aeschbachter M., Bille J., Bannerman E., Musser J. M., Selander R. K., Rocourt J. 1989; Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proceedings of the National Academy of Sciences of the United States of America 86:3818–3822
    [Google Scholar]
  27. Poh C. L., Ocampo J. C., Sng E. H., Bygdeman S. M. 1989; Rapid in situ generation of DNA restriction endonuclease patterns for Neisseria gonorrhoeae. Journal of Clinical Microbiology 27:2784–2788
    [Google Scholar]
  28. Poh C. L., Khng H. P., Lim C. K., Loh G. K. 1992; Molecular typing of Neisseria gonorrhoeae by restriction fragment length polymorphisms. Genitourinary Medicine 68:106–110
    [Google Scholar]
  29. Sarafian S. K., Knapp J. S. 1989; Molecular epidemiology of gonorrhea. Clinical Microbiology Reviews 2: suppl. S49–S55
    [Google Scholar]
  30. Seifert H. S., So M. 1988; Genetic mechanisms of bacterial antigenic variation. Microbiological Reviews 52:327–336
    [Google Scholar]
  31. Seifert H. S., Ajioka R. S., Marchal C., Sparling P. F., So M. 1988; DNA transformation leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature; London: 336392–395
    [Google Scholar]
  32. Selander R. K., Levin B. R. 1980; Genetic diversity and structure in Escherichia coli populations. Science 210:545–547
    [Google Scholar]
  33. Selander R. K., Musser J. M. 1990; The population genetics of bacterial pathogenesis. In The Molecular Basis of Bacterial Patho-genesis pp. 11–36 Iglewski B. H., Clark V. L. Edited by Orlando: Academic Press;
    [Google Scholar]
  34. Selander R. K., Mckinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. 1985; Genetic structure of populations of Legionella pneumophila. Journal of Bacteriology 163:1021–1037
    [Google Scholar]
  35. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology 51:873–884
    [Google Scholar]
  36. Selander R. K., Caugant D. A., Whittam T. S. 1987; Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology 2 pp. 1625–1648 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Selander R. K., Beltran P., Smith N. H., Helmuth R., Rubin F. A., Kopecko D. J., Ferris K., Tall B. D., Cravioto A., Musser J. M. 1990; Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infection and Immunity 58:2262–2275
    [Google Scholar]
  38. Souza V., Ngyen T. T., Hudson R. R., Pinero D., Lenski R. E. 1992; Hierarchial analysis of linkage disequilibrium in Rhizobium populations: evidence for sex?. Proceedings of the National Academy of Sciences of the United States of America 89:8389–8393
    [Google Scholar]
  39. Stern A., Brown M., Nickel P., Meyer T. F. 1986; Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47:61–71
    [Google Scholar]
  40. Stoltzfus A., Leslie J. F., Milkman R. 1988; Molecular evolution of the Escherichia coli chromosome. I. Analysis of the structure and natural variation in a previously uncharacterized region between trp and tonB. Genetics 120:345–358
    [Google Scholar]
  41. Tam M. R., Buchanan T. M., Sandstrom E. G., Holmes K. K., Knapp J. S., Siadak A. W., Nowinski R. C. 1982; Serological classification of Neisseria gonorrhoeae with monoclonal antibodies. Infection and Immunity 36:1042–1053
    [Google Scholar]
  42. Wang J.-F., Caugant D. A., Li X., Hu X., Poolman J. T., Crowe B. A., Achtman M. 1992; Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in the People’s Republic of China. Infection and Immunity 60:5267–5282
    [Google Scholar]
  43. Weir B. S. 1990 Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  44. Whittam T. S., Wilson R. A. 1988; Genetic relationships among pathogenic strains of avian Escherichia coli. Infection and Immunity 56:2458–2466
    [Google Scholar]
  45. Whittam T. S., Ochman H., Selander R. K. 1983a; Multilocus genetic structure in natural populations of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 80:1751–1755
    [Google Scholar]
  46. Whittam T. S., Ochman H., Selander R. K. 1983b; Geographic components of linkage disequilibrium in natural populations of Escherichia coli. Molecular Biology and Evolution 1:67–83
    [Google Scholar]
  47. Zhou J., Spratt B. G. 1992; Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene. Molecular Micro-biology 6:2135–2146
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2603
Loading
/content/journal/micro/10.1099/00221287-139-11-2603
Loading

Data & Media loading...

Most cited Most Cited RSS feed