1887

Abstract

Genetic instability in DSM 40697 is correlated with genomic instability characterized by multiple rearrangements (deletions and/or amplifications) occurring in a large unstable region. We have focused on one of the two amplifiable DNA loci which were mapped in this region: the amplifiable unit of DNA locus 6 (). The nucleotide sequence of one fragment of 1·9 kb reveals the presence of two open reading frames (ORF1 and ORF2) on the basis of the typical base composition at each of the three positions within codons. ORF1 shows some similarity with a gene encoding a regulatory protein. The presence of potential genes in this unstable locus was unexpected because deletions occurred with high frequency within this region in the genetic instability-derived mutant strains. However, transcription analyses by S1 nuclease protection experiments on the wild-type strain showed transcription of both ORF1 and ORF2. Moreover, the amplified strain reveals increased transcription of ORF1 but no transcription of ORF2. The amplification therefore results in a switch in transcription. The unstable region of DSM 40697 therefore is not a ‘silent’ region because at least some loci are transcribed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2559
1993-11-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2559.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2559&mimeType=html&fmt=ahah

References

  1. Allison S. L., Phillips A. T. 1990; Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. Journal of Bacteriology 172:5470–5476
    [Google Scholar]
  2. Altenbuchner J., Brüderlein M. 1986; The mercury resistance genes of Streptomyces lividans are encoded by an amplifiable DNA sequence. In Book of Abstracts of the 5th International Symposium on the Genetics of Industrial Microorganisms, GIM86 S6-P10
    [Google Scholar]
  3. Altenbuchner J., Cullum J. 1984; DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Molecular and General Genetics 195:134–138
    [Google Scholar]
  4. Beck C. F., Warren R. A. J. 1988; Divergent promoters, a common form of gene organization. Microbiological Reviews 52:318–326
    [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein coding sequences. Gene 30:157–166
    [Google Scholar]
  6. Bibb M. J., Janssen G. R., Ward J. M. 1985; Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) of Streptomyces erythraeus. Gene 38:E357–E368
    [Google Scholar]
  7. Birch A., Häusler A., Vögtli M., Krek W., Hütter R. 1989; Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens. Molecular and General Genetics 217:447–458
    [Google Scholar]
  8. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  9. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  10. Chen C. W., Yu T. W., Chung H. M., Chou C. F. 1992; Discovery and characterization of a new transposable element, Tn4577, in Streptomyces lividans 66. Journal of Bacteriology 174:7762–7769
    [Google Scholar]
  11. Cullum J., Altenbuchner J., Flett F., Piendl W., Platt J. 1986; DNA amplification and genetic instability in Streptomyces. Biotechnology and Genetic Engineering Reviews 4:59–78
    [Google Scholar]
  12. Daniels D. L., Schroeder J. L., Blattner F. R., Szybalski W., Sanger F. 1983; A molecular map of coliphage lambda. In Lambda II pp. 469–517 Hendrix R. W., Roberts J. W., Stahl F. W., Weisberg R. A. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Demuyter P., Leblond P., Decaris B., Simonet J. M. 1988; Characterization of two families of spontaneously amplifiable units of DNA in Streptomyces ambofaciens. Journal of General Microbiology 134:2001–2007
    [Google Scholar]
  14. Demuyter P., Schneider D., Leblond P., Simonet J. M., Decaris B. 1991; A chromosomal hotspot for multiple rearrangements associated with genetic instability of Streptomyces ambofaciens DSM40697. Journal of General Microbiology 137:491–499
    [Google Scholar]
  15. Dittrich W., Betzler M., Schrempf H. 1991; An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Molecular Microbiology 5:2789–2797
    [Google Scholar]
  16. Dodd I. B., Egan J. B. 1987; Systematic method for the detection of potential λ Cro-like DNA-binding regions in proteins. Journal of Molecular Biology 194:557–564
    [Google Scholar]
  17. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  18. Fishman S. E., Hershberger C. L. 1983; Amplified DNA in Streptomyces fradiae. Journal of Bacteriology 155:459–466
    [Google Scholar]
  19. Flett F., Cullum J. 1987; DNA deletions in spontaneous chloramphenicol-sensitive mutants of Streptomyces coelicolor A3(2) and Streptomyces lividans 66. Molecular and General Genetics 207:499–502
    [Google Scholar]
  20. Fujita Y., Fujita T. 1987; The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proceedings of the National Academy of Sciences of the United States of America 84:4524–4528
    [Google Scholar]
  21. Fujita Y., Miwa Y. 1989; Identification of an operator sequence for the Bacillus subtilis gnt operon. Journal of Biological Chemistry 264:4201–4206
    [Google Scholar]
  22. Hohn B., Collins J. 1980; Small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298
    [Google Scholar]
  23. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic manipulations of Streptomyces-A laboratory manual Norwich: John Innes Foundation;
    [Google Scholar]
  24. Hopwood D. A., Bibb M. J., Chater K. F., Janssen G. R., Malpartida F. M., Smith C. P., Schrempf H. 1986; Regulation of gene expression in antibiotic-producing Streptomyces. In Regulation of Gene Expression-25 years on. 39th Symposium of Society for General Microbiology pp. 251–276 Booth I., Higgins C. F. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  25. Hornemann U., Otto C. J., Hoffman G. G., Bertinuson A. C. 1987; Spectinomycin resistance and associated DNA amplification in Streptomyces achromogenes subsp. rubradiris. Journal of Bacteriology 169:2360–2366
    [Google Scholar]
  26. Hütter R. 1967 Systematik der Streptomyceten Basel: Karger Verlag;
    [Google Scholar]
  27. Hütter R., Eckhardt T. 1988; Genetic manipulation. In Actinomycetes in Biotechnology pp. 89–184 Goodfellow M., Williams S. T., Mordarski M. Edited by London: Academic Press;
    [Google Scholar]
  28. Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. D. 1988; DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proceedings of the National Academy of Sciences of the United States of America 85:9436–9440
    [Google Scholar]
  29. Janssen G. R., Ward J. M., Bibb M. J. 1989; Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from Streptomyces fradiae. Genes and Development 3:415–429
    [Google Scholar]
  30. Kieser H. M., Kieser T., Hopwood D. A. 1992; A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. Journal of Bacteriology 174:5496–5507
    [Google Scholar]
  31. Kölling R., Lother H. 1985; AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli. Journal of Bacteriology 164:310–315
    [Google Scholar]
  32. Leblond P., Demuyter P., Moutier L., Laakel M., Decaris B., Simonet J. M. 1989; Hypervariability, a new phenomenon of genetic instability, related to DNA amplification in Streptomyces ambofaciens. Journal of Bacteriology 171:419–423
    [Google Scholar]
  33. Leblond P., Demuyter P., Simonet J. M., Decaris B. 1990; Genetic instability and hypervariability in Streptomyces ambofaciens: towards an understanding of a mechanism of genome plasticity. Molecular Microbiology 4:707–714
    [Google Scholar]
  34. Leblond P., Demuyter P., Simonet J. M., Decaris B. 1991; Genetic instability and associated genome plasticity in Streptomyces ambofaciens: pulsed-field gel electrophoresis evidence for large DNA alterations in a limited genomic region. Journal of Bacteriology 173:4229–4233
    [Google Scholar]
  35. Leblond P., Redenbach M., Cullum J. 1993; Physical map of the Streptomyces lividans 66 genome and comparison with the related strain Streptomyces coelicolor A3(2). Journal of Bacteriology 175:3422–3429
    [Google Scholar]
  36. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  37. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Oliver S. G. others 1992; The complete DNA sequence of yeast chromosome III. Nature; London: 35738–46
    [Google Scholar]
  39. Pabo C. O., Sauer R. T. 1984; Protein-DNA recognition. Annual Review of Biochemistry 53:293–321
    [Google Scholar]
  40. Potekhin Y. A., Danilenko V. N. 1985; The determinant of kanamycin resistance of Streptomyces rimosus: amplification in the chromosome and reversed genetic instability. Molecular Biology 19:805–817 English Translation 19:672–683
    [Google Scholar]
  41. Pridham T. G., Anderson P., Foley C., Anderson P., Lindenfelser L. A., Benedict R. G. 1956/57; A selection of media for maintenance and taxonomic study of Streptomyces. Antibiotic Annual 1956–1957947–953
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  43. Schwacha A., Bender R. A. 1990; Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Klebsiella aerogenes. Journal of Bacteriology 172:5477–5481
    [Google Scholar]
  44. Sedlmeier R., Altenbuchner J. 1992; Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans. Molecular and General Genetics 236:76–85
    [Google Scholar]
  45. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. 1988; λ Zap: a bacteriophage A expression vector with in vivo excision properties. Nucleic Acids Research 16:7583
    [Google Scholar]
  46. Smith C. P., Chater K. F. 1988; Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. Journal of Molecular Biology 204:569–580
    [Google Scholar]
  47. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  48. Wright F., Bibb M. J. 1992; Codon usage in the G + C-rich Streptomyces genome. Gene 113:55–65
    [Google Scholar]
/content/journal/micro/10.1099/00221287-139-11-2559
Loading
/content/journal/micro/10.1099/00221287-139-11-2559
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error