Functional analysis of the gene of Free

Abstract

Three additional alleles of the gene of , whose activity is required for spore outgrowth, were identified. The nucleotide sequence of three mutant genes was determined. Analyses of dominance-recessivity showed that the wild-type allele is dominant over the mutant ones. When the gene was placed under the control of the inducible promoter, the presence of IPTG was necessary to obtain normal growth. The results suggested that the gene is required for growth of . Expression of from the sporulation promoter negatively affected subsequent spore outgrowth, without altering vegetative growth and sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-1-31
1993-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/1/mic-139-1-31.html?itemId=/content/journal/micro/10.1099/00221287-139-1-31&mimeType=html&fmt=ahah

References

  1. Albertini A. M., Galizzi A. 1975; Mutant of Bacillus subtilis with a temperature-sensitive lesionin ribonucleic acid synthesis during germination. Journal of Bacteriology 124:14–25
    [Google Scholar]
  2. Albertini A. M., Galizzi A. 1990; The Bacillus subtilis outB gene is highly homologous to an Escherichia coli ntr-like gene. Journal of Bacteriology 172:5482–5485
    [Google Scholar]
  3. Albertini A. M., Caramori T., Henner D. J., Ferrari. E., Galizzi A. 1987; Nucleotide sequence of the outB locus of Bacillus subtilis and regulation of its expression. Journal of Bacteriology 169:1480–1484
    [Google Scholar]
  4. Albertini A. M., Caramori T., Scoffone F., Galizzi A. 1988; The outB gene of Bacillus subtilis regulates its own transcription. Genes and Development 2:1381–1388
    [Google Scholar]
  5. Allibert P., Willison J. P., Vignais P. 1987; Complementation of nitrogen regulatory (ntr-like) mutations in Rhodobacter capsulatus by an Escherichia coli gene: cloning and sequencing of the gene and characterization of the gene product. Journal of Bacteriology 169:260–271
    [Google Scholar]
  6. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  7. Burbulys D., Trach K. A., Hoch J. A. 1991; Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552
    [Google Scholar]
  8. Chen E. I, Seeburg P. H. 1985; Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:167–170
    [Google Scholar]
  9. Clarke S., Lopez-Diaz I., Mandelstam J. 1986; Use of lacZ gene fusions to determine the dependence pattern of the sporulation gene spoIID in spo mutants of Bacillus subtilis. Journal of Genera! Microbiology 132:2987–2994
    [Google Scholar]
  10. Driks A., Losick R. 1991; Compartmentalized expression of a gene under the control of sporulation transcription factor σE in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 889934–9938
    [Google Scholar]
  11. Ferrari E., Scoffone F., Ciarrocchi G., Galizzi A. 1985; Molecular cloning of a Bacillus subtilis gene involved in spore outgrowth. Journal of General Microbiology 131:2831–2838
    [Google Scholar]
  12. Ferrari F. A., Nguyen A., Lang D., Hoch. J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis. Journal of Bacteriology 154:1513–1515
    [Google Scholar]
  13. Galizzi A., Siccardi A. G., Mazza G., Canosi U., Polsinelli M. 1976; A recombination test to classify mutants of Bacillus subtilis of identical phenotype. Genetical Research 27:47–58
    [Google Scholar]
  14. Gianni M., Galizzi A. 1986; Isolation of genes preferentially expressed during Bacillus subtilis spore outgrowth. Journal of Bacteriology 165:123–132
    [Google Scholar]
  15. Hanahan D. 1985; Techniques for transformation of E. coli. . In DNA Cloning: a Practical Approach 1 pp. 109–132, Edited by. D. M. Glover; Oxford: IRL Press:
    [Google Scholar]
  16. Henner D. J. 1990; Inducible expression of regulatory genes in Bacillus subtilis. Methods in Enzymology 185:223–228
    [Google Scholar]
  17. Hoch J. A., Barat M., Anagnostopoulos C. 1967; Transformation and transduction in recombination-defective mutants of Bacillus subtilis. Journal of Bacteriology 93:1925–1937
    [Google Scholar]
  18. Illing N., Young M., Errington J. 1990; Use of integrational plasmid excision to identify cellular localization of gene expression during sporulation in Bacillus subtilis. Journal of Bacteriology 172:6937–6941
    [Google Scholar]
  19. Micka B., Groch N., Heinemann V., Marahie M. A. 1991; Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. Journal of Bacteriology 173:3191–3198
    [Google Scholar]
  20. Mitchell C., Morris P. W., Vary J. C. 1992; Identification of proteins phosphorylated by ATP during sporulation of Bacillus subtilis. Journal of Bacteriology 174:2474–2477
    [Google Scholar]
  21. Moir A., Yazdi M. A., Kemp E. H. 1991; Spore germination genes of Bacillus subtilis. 168: Research in Microbiology 142:847–850
    [Google Scholar]
  22. Rong S., Rosenkrantz M. S., Sonenshein A. L. 1986; Transcriptional control of the Bacillus subtilis spoIlD gene. Journal of Bacteriology 165:771–779
    [Google Scholar]
  23. Saito H., Miura K. 1963; Preparation of transforming DNA by phenol treatment. Biochimica et Biophysica Acta 72:619–629
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  25. Setlow P. 1981; Biochemistry of bacterial forespore development and spore germination. In Sporulation and Germination pp. 13–28, Edited by. Levinson H. S.; Sonenshein A. L.; Tipper D. J.; Washington, DC: American Society for Microbiology:
    [Google Scholar]
  26. Siccardi A. G., Galizzi A., Mazza G., Clivio A., Albertim A. M. 1975; Synchronous germination and outgrowth of fractionated Bacillus subtilis spores: tool for the analysis of differentiation and division of bacterial cells. Journal of Bacteriology 121:13–19
    [Google Scholar]
  27. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonuclease. Proceedings of the National Academy of Sciences of the United States of America 441072–1078
    [Google Scholar]
  28. Stragier P., Losick R. 1990; Cascades of sigma factor revisited. Molecular Microbiology 4:1801–1806
    [Google Scholar]
  29. Stragier P., Bonamy C., Karmazyn-Campelll C. 1988; Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure should control gene expression. Cell 52:697–704
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-1-31
Loading
/content/journal/micro/10.1099/00221287-139-1-31
Loading

Data & Media loading...

Most cited Most Cited RSS feed