Identification of two expressed flagellin genes in the insect pathogen subsp. alesti Free

Abstract

Flagellin from subspecies strain Bt75 was isolated both from the culture medium and from flagella. Two protein forms with molecular masses close to 32 kDa were obtained fromflagella; one form was identical to the flagellin purified from the culture medium. The N-terminal amino acid sequences were identical for both forms. Two genes coding for flagellin have been identified in subsp. . The gene was cloned and sequenced in its entire length. The clone containing the gene was incomplete. Both genes were expressed in the mid-exponential growth phase.The gene was flanked by long (355 bp) direct repeats protruding into the coding region in both th N- and C-terminal parts of the gene. DNA sequences related to the gene were found in most other subspecies, and in two of them, subsp. and subsp. , such sequences were present in multiple copies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-1-21
1993-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/1/mic-139-1-21.html?itemId=/content/journal/micro/10.1099/00221287-139-1-21&mimeType=html&fmt=ahah

References

  1. Bergman K., Nulty E., Su L. 1991; Mutations in the two flagellin genes of Rhizobium meliloti. Journal of Bacteriology 173:3716–3723
    [Google Scholar]
  2. Colman S. D., Hu P. C., Bott K. F. 1990; Prevalence of novel repeat sequences in and around the PI operon in the genome of Mycoplasma pneumoniae. Gene 87:91–96
    [Google Scholar]
  3. Cooper D. J., Zhang Q. Y., Arellando A., Pinnock. D. E. 1990; The effect of Bacillus thuringiensis var. tolworthi on Lucilia cuprina larval tissue - an ultrastructural study. Vth International Colloquium on Invertebrate Pathology and Microbial Control 357:
    [Google Scholar]
  4. Dalhammar G., Steiner H. 1984; Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. European Journal of Biochemistry 139:247–252
    [Google Scholar]
  5. Edlund T., Siden I., Boman H. G. 1976; Evidence for two immune inhibitors from Bacillus thuringiensis interfering with the humoral defence system of saturniid pupae. Infection and Immunity 14:934–941
    [Google Scholar]
  6. Edman P., Begg G. 1967; A protein sequenator. European Journal of Biochemistry 1:80–91
    [Google Scholar]
  7. Faust R. M. 1977; Toxins of Bacillus thuringiensis: mode of action. In Biological Regulation of Vectors. The Saprophytic and Aerobic Bacteria and Fungi pp. 31–48, Edited by. J. D. Briggs; Washington, DC : DHEW publication no. (NHI) 77-1180
    [Google Scholar]
  8. Ferre J., Real M. D., Van Rie J., Jansens. S., Peeeroen. M. 1991; Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the Natational Academy of Sciences of the United States of America 885119–5123
    [Google Scholar]
  9. Fischer S. H., Nachamkin I. 1991; Common and variable domains of the flagellin gene, flaA, in Campylobacter jejuni. Molecular Microbiology 51151–1158
    [Google Scholar]
  10. George D. G., Barker W. C., Hunt L. T. 1986; The protein identification resource (PIR). Nucleic Acids Research 14:11–15
    [Google Scholar]
  11. Goding J. W. 1983 Monoclonal Antibodies: Principles and Practice London: Academic Press:
    [Google Scholar]
  12. Goldberg I., Mekalanos J. J. 1986; Effect of a recA mutation on cholera toxin gene amplification and deletion events. Journal of Bacteriology 165:723–731
    [Google Scholar]
  13. Guerry P., Alm R. A., Power M. E., Logan S. M., Trust T. J. 1991; Role of two flagellin genes in Campylobacter motility. Journal of Bacteriology 173:4757–4764
    [Google Scholar]
  14. Heierson A., Sidén I., Kivaisi A., Boman H. G. 1986; Bacteriophage-resistant mutants of Bacillus thuringiensis with decreased virulence in pupae of Hyalophora cecropia. Journal of Bacteriology 167:18–24
    [Google Scholar]
  15. Helmann J. D. 1991; Alternative sigma factors and the regulation of flagellar gene expression. Molecular Microbiology 5:2875–2882
    [Google Scholar]
  16. Henner D. J., Yang M., Chen E., Hellmiss R., Rodriguez H., Low M. G. 1988; Sequence of the Bacillus thuringiensis phosphatidylinositol specific phospholipase C. Nucleic Acids Re-search 16:10383
    [Google Scholar]
  17. Höfte H., Whiteley H. R. 1989; Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53:242–255
    [Google Scholar]
  18. Joys T. M. 1988; The flagellar filament protein. Canadian Journal of Microbiology 34452–458
    [Google Scholar]
  19. Karamanlidou G., Lambropoulos A. F., Koliais S. I., Manousis T., Ellar D., Kastritsis C. 1991; Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fly (Dacus oleae). Applied and Environmental Microbiology 57:2277–2282
    [Google Scholar]
  20. Kelly-Wintenberg K., Anderson T., Montie T. C. 1990; Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa. Journal of Bacteriology 172:5135–5139
    [Google Scholar]
  21. Klemenz R., Hultmark D., Gehring W. J. 1985; Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO Journal 4:2053–2060
    [Google Scholar]
  22. Kostrzynska M., Betts J. D., Austin J. W., Trust T. J. 1991; Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. Journal of Bacteriology 173:937–946
    [Google Scholar]
  23. Krieg A. 1986 Bacillus thuringiensis ein mikrobielles Insektizid Paul Payer; Berlin & Hamburg:
    [Google Scholar]
  24. Kuwajima G., Asaka J. L., Fujiwara T., Node K., Kondo E. 1986; Nucleotide sequence of the hag gene encoding flagellin of Escherichia coli. Journal of Bacteriology 168:1479–1483
    [Google Scholar]
  25. Landén R., Heierson A., Boman H. G. 1981; A phage for generalized transduction in Bacillus thuringiensis and mapping of four genes for antibiotic resistance. Journal of General Microbiology 123:49–59
    [Google Scholar]
  26. Li R. S., Jarret P., Burges H. D. 1987; Importance of spores, crystals, and δendotoxins in the pathogenicity of different varieties of Bacillus thuringiensis in Galleria mellonella and Pieris brassicae. Journal of Invertebrate Pathology 50:277–284
    [Google Scholar]
  27. Logan S. M., Trust T. J., Guerry P. 1989; Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. Journal of Bacteriology 171:3031–3038
    [Google Scholar]
  28. Lövgren A., Zhang M., Engström Å., Dalhammar G., Landén R. 1990; Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Molecular Microbiology 4:2137–2146
    [Google Scholar]
  29. Mcgaughey W. H. 1985; Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195
    [Google Scholar]
  30. Mcsweegan E., Walker R. I. 1986; Identification and characterization of two Campylobacter jejuni adhesins for cellularand mucos substrates. Infection and Immunity 53:141–148
    [Google Scholar]
  31. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory:
    [Google Scholar]
  32. Mirel D. B., Chamberlin M. J. 1989; The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. Journal of Bacteriology 171:3095–3101
    [Google Scholar]
  33. Ninfa A. J., Mullin D. A., Ramakrishnan G., Newton A. 1989; Escherichia coli σ54 RNA polymerase recognizes Caulobacter crecentus flbG and flaN flagellar gene promotersin vitro. Journal of Bacteriology 171:383–391
    [Google Scholar]
  34. Oiler L., Kocka F., Smith R. W., Koffeler H. 1971; The presence of flagellin A and B in the flagellum of Bacillus pumilus 101. Bacteriological Proceedings 27:
    [Google Scholar]
  35. Ordal G. W., Nettleton D. O., Hoch J. A. 1983; Genetics of Bacillus subtilis chemotaxis: isolation and mapping of mutations and cloning of chemotaxis genes. Journal of Bacteriology 154:1088–1097
    [Google Scholar]
  36. Rasmuson T., Boman H. G. 1977; The assay and the specificity problem in insect immunity. In Developmental Immunobiology p. 83–90, Edited by. J. B. Solomon; J. D. Horton; Amsterdam: Elsevier/North-Holland Biomedical Press:
    [Google Scholar]
  37. Ren G. X., Li K., Yang M., Yi X. 1975; The classification of the strains of Bacillus thuringiensis group. Acta Microbiologica Sinica 15:292–301
    [Google Scholar]
  38. Richardson K. 1991; Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae:analysis of motility mutants in three animal models. Infection and Immunity 59:2727–2736
    [Google Scholar]
  39. Schnepf H. E., Wong H. C., Whiteley H. R. 1985; The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. Journal of Biological Chemistry 260:6264–6272
    [Google Scholar]
  40. Schwartz R. M., Dayhoff M. O. 1979 Atlas of Protein Sequence and Structure pp. 353–358, Silver Springs. MD; National Biomedical Research Foundation:
    [Google Scholar]
  41. Sebesta K., Horska K. 1970; Mechanism of inhibition of DNA-dependent RNA polymerase by exotoxin of Bacillus thuringiensis. Biochimica et Biophysica Acta 209:357–367
    [Google Scholar]
  42. Shorey H. H., Hale R. L. 1965; Mass rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58:522–524
    [Google Scholar]
  43. Sidén I., Dalhammar G., Telander B., Boman H. G., Sommerville H. 1979; Virulence factors in Bacillus thuringiensis: purification and properties of a protein inhibitor of immunity in insects. Journal of General Microbiology 114:45–52
    [Google Scholar]
  44. Smith R. A., Couche G. A. 1991; The phylloplane as a source of Bacillus thuringiensis variants. Applied and Environmental Micro-biology 57:311–315
    [Google Scholar]
  45. Somerville H. J., Pockett H. V. 1975; An insect toxin from spores of Bacillus thuringiensis and Bacillus cereus. Journal of General Microbiology 87:359–369
    [Google Scholar]
  46. Su C.-J., Chavoya A., Basemna J. B. 1988; Regions of Mycoplasma pneumoniae cytadhesin PI structural gene exist as multiple copies. Infection and Immunity 56:3157–3161
    [Google Scholar]
  47. Szekely E., Simon M. 1983; DNA sequence adjacent to flagellar genes and evolutionof flagellar-phase variation. Journal of Bacteriology 155:74–81
    [Google Scholar]
  48. Thorn C. B. 1978; Transduction in Bacillus thuringiensis. Applied and Environmental Microbiology 35:1109–1115
    [Google Scholar]
  49. Totten P. A., Lory S. L. 1990; Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAR. Journal of bacteriology 172:7188–7199
    [Google Scholar]
  50. Van Rie J., Mcgaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. 1990; Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247:72–74
    [Google Scholar]
  51. Wallich R., Moter S. E., Simon M. M., Ebnet K., Heiberger A., Kramer M. D. 1990; The Borrelia burgdorferi flagellum-associated 41-kilodalton antigen (flagellin): molecular cloning, expression and amplification of the gene. Infection and Immunity 58:1711–1719
    [Google Scholar]
  52. Wenzel R., Herrmann R. 1988; Repetitive DNA sequences in Mycoplasma pneumoniae. Nucleic Acids Research 16:8337–8350
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-1-21
Loading
/content/journal/micro/10.1099/00221287-139-1-21
Loading

Data & Media loading...

Most cited Most Cited RSS feed