1887

Abstract

Outer membrane (OM), cytoplasmic membrane (CM) and intracytoplasmic membranes (ICM) from the halophilic phototrophic purple sulphur bacterium 9903 were purified and characterized. The three membrane fractions were significantly different in regard to protein profiles on SDS-PAGE, and to the composition of amino acids, fatty acids and lipids. The presence of lipoproteins, the occurrence of lyso-phosphatidyl-ethanolamine and an increased content of saturated and short-chain fatty acids are characteristic properties of the OM. CM and ICM fractions are different on the basis of buoyant density, of protein profiles and amino acid composition, and due to the presence of succinate dehydrogenase activity in CM. In addition, CM and ICM showed significant differences in pigment content and absorption spectra.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-1-111
1993-01-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/1/mic-139-1-111.html?itemId=/content/journal/micro/10.1099/00221287-139-1-111&mimeType=html&fmt=ahah

References

  1. Baumgardner D., Deal C., Kaplan S. 1980; Protein composition of Rhodopseudomonas sphaeroides outer membrane. Journal of Bacteriology 143:265–273
    [Google Scholar]
  2. Bigelow C. C. 1967; On the average hydrophobicity of proteins and the relation between it and protein structure. Journal of Theoretical Biology 16:187–211
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–917
    [Google Scholar]
  4. Brunisholz R. A., Suter F., Zuber H. 1984; The light harvesting polypeptides of Rhodospirillum rubrum. Hoppe-Seyler’s Zeitschrift für physiologische Chemier 365:675–688
    [Google Scholar]
  5. Chen P. S., Toribara T. Y., Warner H. 1956; Microdetermination of phosphorus. Analytical Chemistry 28:1756–1758
    [Google Scholar]
  6. Clayton R. K. 1963; Towards the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochemica et Biophysica Acta 75:312–323
    [Google Scholar]
  7. Collins M. L. P., Niederman R. A. 1976; Membranes of Rhodospirillum rubrum: isolation and physicochemical properties of membranes from aerobically grown cells. . Journal of Bacteriology 126:1316–1325
    [Google Scholar]
  8. Drews G., Oelze J. 1981; Organization and differentiation of membranes of phototrophic bacteria. Advances in Microbial Physiology1–85
    [Google Scholar]
  9. Evers D., Weckesser J., Drews G. 1984; Protein on the cell surface of the moderately halophilic phototrophic bacterium Rhodo-spirillum salexigens. Journal of Bacteriology 106:107–111
    [Google Scholar]
  10. Feick R. G., Fitzpatrick M., Fuller R. C. 1982; Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. Journal of Bacteriology 150:905–915
    [Google Scholar]
  11. Flammann H., Weckesser J. 1984; Characterization of the cell wall and outer membrane of Rhodopseudomonas capsulata. Journal of Bacteriology 159:191–198
    [Google Scholar]
  12. Garcia A. F., Drews G. 1980; Characterization of three membrane fractions isolated from cells of Rhodopseudomonas capsulata adapting from chemotrophic to phototrophic conditions. Archives of Microbiology 127:157–161
    [Google Scholar]
  13. Guillotin J., Reiss-Husson F. 1975; Cytoplasmic and outer membranes separation in Rhodopseudomonas sphaeroides. Archives of Microbiology 105:269–275
    [Google Scholar]
  14. Hellingwerf K. J., Michels P. A. M., Dorpema J. W., Konings W. N. 1975; Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory andcyclic electron flow. European Journal of Biochemistry 55:397–406
    [Google Scholar]
  15. Holtzhauer M. 1989; RNS-Bestimmung mit Orcin und DNS-Bestimmung mit Diphenylamin. . In Biochemische Labormethoden pp. 10–11 Berlin: Springer-Verlag;
    [Google Scholar]
  16. Hurlbert R. A., Golecki J. R., Drews G. 1974; Isolation and characterization of Chromatium vinosum membranes. Archives of Microbiology 101:169–186
    [Google Scholar]
  17. Imhoff J. F. 1988; Anoxygenic phototrophic bacteria. In Methods in Aquatic Bacteriology, pp. 207–240 Austin B. Edited by Chichester: John Wiley;
    [Google Scholar]
  18. Imhoff J. F. 1991; Polar lipids and fatty acids in the genus Rhodobacter. Systematic and Applied Microbiology 14:228–234
    [Google Scholar]
  19. Imhoff J. F., Thiemann B. 1991; Influence of salt concentration and temperature on the fatty acid composition of Ectothiorhodospira and other halophilic phototrophic purple bacteria. Archives of Microbiology 156:370–375
    [Google Scholar]
  20. Imhoff J. F., Sahl H. G., Soliman G.S.H., Trüper H. G. 1979; The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology Journal 1:219–234
    [Google Scholar]
  21. Imhoff J. F., Ditandy T., Thiemann B. 1991; Salt adaptation of Ectothiorhodospira. In General and Applied Aspects of Halophilic Microorganisms, pp. 115–120 Edited by Rodriguez-Valera F. New York: Plenum Press;
    [Google Scholar]
  22. Inamine G. S., Van Houten J., Niederman R. A. 1984; Intracellular localization of photosynthetic membrane growth initiation sites in Rhodopseudomonas sphaeroides. Journal of Bacteriology 158:425–429
    [Google Scholar]
  23. Kaufmann N., Reidl H. -H., Golecki. J. R., Garcia A. F., Drews G. 1982; Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from chemotrophic to phototrophic growth conditions. Archives of Microbiology 131:313–322
    [Google Scholar]
  24. King T. S. 1963; Reconstitution of respiratory chain enzyme systems. Journal of Biological Chemistry 12:4032–4036
    [Google Scholar]
  25. King M. T., Drews G. 1975; The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris. Archives of Microbiology 102:219–231
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteinsduring the assembly of the head of bacteriophage T4. Nature; London: 227:680–685
    [Google Scholar]
  27. Lefebvre S., Picorel R., Gingras G. 1989; Further characterization of the photoreaction center from Ectothiorhodospira spec. Detection of the H subunit by monoclonal antibodies. FEMS Microbiology Letters 65:247–252
    [Google Scholar]
  28. Leguijt T., Hellingwerf K. J. 1991; Characterization of reaction center/antenna complexes from bacteriochlorophylll a containing Ectothiorhodospiraceae. Biochimica et Biophvsica Acta 1057:353–360
    [Google Scholar]
  29. Niederman R. A. 1974; Membranes of Rhodopseudomonas spheroides: interactions of chromatophores with the cell envelope. Journal of Bacteriology 117:19–28
    [Google Scholar]
  30. Niederman R. A., Gibson K. D. 1978; Isolation and physicochemical properties of membranes from purple photosynthetic bacteria. In The Photosynthetic Bacteria pp. 79–118 Clayton R. K., Sistrom W. R. Edited by New York: Plenum Press;
    [Google Scholar]
  31. Niederman R. A., Mallon D. E., Parks F. C. 1979; Membranes of Rhodopseudomonas sphaeroides. VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll a protein complexes. Biochimica et Biophysica Acta 555:210–220
    [Google Scholar]
  32. Oelze J., Golecki J. R., Kleinig H., Weckesser J. 1975; Characterization of two cell-envelope fractions from chemo-trophically grown Rhodospirillum rubrum. Antonie van Leeuwenhoek 41:273–286
    [Google Scholar]
  33. Oyewole S. H., Holt S. 1976; Structure and composition of intracytoplasmic membranes of Ectothiorhodospira mobilis. Archives of Microbiology 107:167–182
    [Google Scholar]
  34. Picorel R., Fu T., Holt R. E., Cotton T. M., Seibert M. 1990; Surface-enhanced resonance Raman scattering spectroscopy of bacterial photosynthetic membranes: orientation of the carotenoids of Rhodobacter sphaeroides 2.4.1. Biochemistry 29:707–712
    [Google Scholar]
  35. Reilly P. A., Niederman R. A. 1986; Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides. Journal of Bacteriology 167:153–159
    [Google Scholar]
  36. Sahl H. G., Grobgarten M., Widger W. R., Cramer W. A., Brandis H. 1985; Structural similarities of the staphylococcin-like peptide Pep 5 to the peptide antibiotic nisin. Antimicrobial Agents and Chemotherapy 27:836–840
    [Google Scholar]
  37. Takemoto J., Bachmann R. C. 1979; Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities. Archives of Biochemistry and Biophysics 195:526–534
    [Google Scholar]
  38. Vanderkoi G., Capaldi R. 1972; A comparative study of the amino acid composition of membrane proteins and other proteins. Annals of the New York Academy of Sciences 195:135–138
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-1-111
Loading
/content/journal/micro/10.1099/00221287-139-1-111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error