Lipid and protein composition of outer and inner membranes in wild-type strains and mutants of Free

Abstract

The glycerolipid and protein compositions of the outer and inner membranes of were studied. The wild-type strain Rm41 was shown to contain three phospholipids characteristic for most Gram-negative bacteria, phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol, this last compound being concentrated into the inner membrane. As in several bacteria interacting with plants, the presence of phosphatidylcholine, phosphatidyl--monomethylethanolamine and phosphatidyl--dimethylethanolamine was also demonstrated. Induction of the genes by luteolin did not affect the lipid composition and no difference in lipid composition was found between the wild-type strain and a number of Nodand Fixmutants tested. Protein analysis of the inner and outer membranes showed that they exhibit very different patterns with several bands specific for one or the other membrane. A Nodmutant carrying a large deletion in the symbiotic megaplasmid pRme41b showed differences in the protein patterns even before induction by luteolin, indicating that this megaplasmid codes for several membrane proteins. When the genes of strain Rm41 were induced by luteolin, two new bands at around 60 kDa and 44 kDa appeared in both the outer and the inner membranes. By using a strain overexpressing the genes and the technique of immunoblotting with antibodies against NodC, it was confirmed that the 44 kDa band corresponded to the NodC protein. This protein was not found in a C:: Tn mutant. This work represents the first step in the characterization of modifications induced by luteolin treatment at the membrane level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-9-1973
1992-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/9/mic-138-9-1973.html?itemId=/content/journal/micro/10.1099/00221287-138-9-1973&mimeType=html&fmt=ahah

References

  1. Banfalvi Z., Sakanyan V., Koncz C., Kiss A., Dusha I., Kondorosi A. 1981; Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Molecular and General Genetics 184:318–325
    [Google Scholar]
  2. Baev N., Endre G., Petrovics G., Banfalvi Z., Kondorosi A. 1991; Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for d-glucosamine synthetase. Molecular and General Genetics 228:113–124
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–917
    [Google Scholar]
  4. Blum H., Hidburg B., Gross J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  6. Braun V., Hantke K. 1974; Biochemistry of bacterial cell envelopes. Annual Review of Biochemistry 43:89–121
    [Google Scholar]
  7. Bulawa C. E., Wasco W. 1991; Chitin and nodulation. Nature, London 353:710
    [Google Scholar]
  8. Forrai T., Vincze E., Banfalvi Z., Kiss G. B., Randhawa S., Kondorosi A. 1983; Localization of symbiotic mutations in Rhizobium meliloti. Journal of Bacteriology 153:635–643
    [Google Scholar]
  9. Gerson T., Patel J. J. 1975; Neutral lipids and phospholipids of free-living and bacteroid forms of 2 strains of Rhizobium infective on Lotus pedunculatus. Applied Microbiology 30:193–198
    [Google Scholar]
  10. Gerson T., Patel J. J., Nixon L. N. 1975; Some unusual fatty acids of Rhizobium. Lipids 10:134–139
    [Google Scholar]
  11. John M., Schmidt J., Wieneke U., Kondorosi E., Kondorosi A., Schell J. 1985; Expression of the nodulation gene nodC of Rhizobium meliloti in Escherichia coli: role of the nodC gene product in nodulation. EMBO Journal 4:2425–2430
    [Google Scholar]
  12. John M., Schmidt J., Wieneke L., Krussmann H. D., Schell J. 1988; Transmembrane orientation and receptor like structure of the Rhizobium meliloti common nodulation protein NodC. EMBO Journal 7:583–588
    [Google Scholar]
  13. Kates M. 1986; Isolation, analysis, identification of lipids. In Techniques in Lipidology, 2nd edn. p. 464 Edited by Burdon R. H., Knippenberg P. H. Amsterdam: Elsevier;
    [Google Scholar]
  14. Kondorosi A. 1990; Rhizobium–legume interactions: nodulation genes. In Plant–Microbe Interactions. Molecular and Genetic Perspectives vol. 3 pp. 383–420 Edited by Kosuge T., Nester E. W. New York: McGraw-Hill;
    [Google Scholar]
  15. Kondorosi A., Svab Z., Kiss G. B., Dixon R. A. 1977; Ammonia assimilation and nitrogen fixation in Rhizobium meliloti. Molecular and General Genetics 151:221–226
    [Google Scholar]
  16. Kondorosi E., Gyuris J., Schmidt J., John M., Duda E., Hoffmann B., Schell J., Kondorosi A. 1989; Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO Journal 5:1331–1340
    [Google Scholar]
  17. Kondorosi E., Pierre M., Cren M., Haumann U., Buire M., Hoffmann B., Schell J., Kondorosi A. 1992; Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. Journal of Molecular Biology 223:885–896
    [Google Scholar]
  18. Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Prome J. C., Denarie J. 1990; Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, London 344:781–784
    [Google Scholar]
  19. Lugtenberg B. J. J., van Alphen L. 1983; Molecular architecture of the outer membrane of E. coli and other Gram-negative bacteria. Biochimica et Biophysica Acta 737:51–115
    [Google Scholar]
  20. de Maagd R. 1989 Studies on the cell surface of the root-nodulating bacterium Rhizobium leguminosarum PhD. thesis University of Leiden; Holland:
    [Google Scholar]
  21. de Maagd R., Lugtenberg B. 1986; Fractionation of Rhizobium leguminosarum cells into outer membrane, cytoplasmic membrane, periplasmic and cytoplasmic components. Journal of Bacteriology 167:1083–1985
    [Google Scholar]
  22. de Maagd R., van Rossum A. C., Lugtenberg B. J. J. 1988; Recognition of individual strains of fast-growing rhizobia by using profiles of membrane proteins and lipopolysaccharides. Journal of Bacteriology 170:3782–3785
    [Google Scholar]
  23. Mackenzie S. L., Lapp M. S., Child J. J. 1979; Fatty acid composition of Rhizobium spp. Canadian Journal of Microbiology 25:68–74
    [Google Scholar]
  24. Mangold H. K. 1961; Thin layer chromatography of lipids. I. Journal of the American Oil Chemist’s Society 38:708–727
    [Google Scholar]
  25. Mangold H. K. 1964; Thin layer chromatography of lipids. II. Journal of the American Oil Chemist’s Society 38:762–773
    [Google Scholar]
  26. Metcalfe L. D., Schmitz A. A., Pelka J. R. 1966; Rapid preparation of fatty acids esters from lipids for gas chromatographic analysis. Analytical Chemistry 38:514–515
    [Google Scholar]
  27. Miller R. W., Tremblay P. A. 1983; Cytoplasmic membrane of Rhizobium meliloti bacteroids. I. Alterations in lipid composition, physical properties, and respiratory proteins. Canadian Journal of Biochemical Cell Biology 61:1334–1340
    [Google Scholar]
  28. Osborn M. J., Wu H. C. P. 1980; Proteins of the outer membrane of Gram-negative bacteria. Annual Review of Microbiology 34:369–422
    [Google Scholar]
  29. Osborn M. J., Gander J. E., Parisi E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium. Journal of Biological Chemistry 247:3962–3972
    [Google Scholar]
  30. Peters N. K., Frost J. W., Long S. R. 1986; A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980
    [Google Scholar]
  31. Powel G. L., Abramovitch D. A. 1985; Function of cardiolipin in the cytochrome C oxidase. Federation Proceedings of the American Society of Experimental Biology 44:478–485
    [Google Scholar]
  32. Robertson J. G., Wells B., Brewin N. J., Wood E., Knight C. D., Downie J. A. 1985; The legume–Rhizobium symbiosis: a cell surface interaction. Journal of Cell Sciencessuppl. 2317–331
    [Google Scholar]
  33. Roughan P. G., Slack C. R. 1983; Cellular organization of glyceride metabolism. Annual Review of Plant Physiology 33:97–132
    [Google Scholar]
  34. Schmidt J., John M., Kondorosi E., Kondorosi A., Wieneke U., Schroder G., Schroder J., Schell J. 1984; Mapping of the protein-coding regions of Rhizobium meliloti common nodulation genes. EMBO Journal 3:1705–1711
    [Google Scholar]
  35. Schultze M., Quiclet-Sire J. E., Kondorosi E., Virelizier H., Glushka J. N., Endre G., Gero S. D., Kondorosi A. 1992; Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proceedings of the National Academy of Sciences of the United States of America 89:192–196
    [Google Scholar]
  36. Thompson E. A., Kaupman A. E., Johnston N. C., Goldfine H. 1983; Phospholipids of Rhizobium meliloti and Agrobacterium tumefaciens: lack of effect of Ti plasmid. Lipids 18:602–606
    [Google Scholar]
  37. Tӧrӧk I., Kondorosi E., Stepkowski T., Posfai J., Kondorosi A. 1984; Nucleotide sequence of Rhizobium meliloti nodulation genes. Nucleic Acids Research 12:9509–9524
    [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 76:4350–4354
    [Google Scholar]
  39. Trémolières A., Lepage M. 1971; Changes in lipid composition during greening of etiolated pea seedling. Plant Physiology 47:329–334
    [Google Scholar]
  40. Varenne P., Das B. C., Polonsky J., Tence M. 1985; Chemical ionization and fast atom bombardment mass spectometry of platelet activating factor (PAF-acether) and related phospholipids. Biomedical Mass Spectrometry 12:6–10
    [Google Scholar]
  41. Wilkinson S. G. 1988; Gram negative bacteria. In Microbial Lipids I pp. 299–488 Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-9-1973
Loading
/content/journal/micro/10.1099/00221287-138-9-1973
Loading

Data & Media loading...

Most cited Most Cited RSS feed