Long-chain alcohol and aldehyde dehydrogenase activities in strain HO1-N Free

Abstract

Three alcohol dehydrogenases have been identified in sp. strain HO1-N: an NAD-dependent enzyme and two NADP-dependent enzymes. One of the NADP-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent value of 5.2 μM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD-dependent enzyme, an NADP-dependent enzyme and one which was nucleotide independent. The NAD-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent value of 0.2 μM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster’s Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent of 0.36 mM for decanal.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-9-1963
1992-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/9/mic-138-9-1963.html?itemId=/content/journal/micro/10.1099/00221287-138-9-1963&mimeType=html&fmt=ahah

References

  1. Adachi O., Tayama K., Shinagawa E., Matsushita K., Ameyama M. 1980; Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter sub-oxydans. Agricultural and Biological Chemistry 44:503–515
    [Google Scholar]
  2. Ameyama M., Osada K., Shinayawa E., Matsushita K., Adachi O. 1981; Purification and characterization of aldehyde dehydrogenase of Acetobacter aceti. Agricultural and Biological Chemistry 45:1889–1890
    [Google Scholar]
  3. Bäcklin K. I. 1958; The equilibrium constant of the system ethanol, aldehyde, DPN+, DPNH and H+. Acta Chemica Scandinavica 12:1279–1285
    [Google Scholar]
  4. Benson S., Shapiro J. 1976; Plasmid-determined alcohol dehydrogenase activity in alkane-utilizing strains of P. putida. Journal of Bacteriology 126:794–798
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  6. Butte W. 1983; Rapid method for the determination of fatty acid profiles from fats and oils using trimethylsulphonium hydroxide for transesterification. Journal of Chromatography 261:142–145
    [Google Scholar]
  7. Dalziel K. 1962; Kinetic studies of liver alcohol dehydrogenase. Biochemical Journal 84:244–254
    [Google Scholar]
  8. Dalziel K., Dickinson F. M. 1965; The activity of liver alcohol dehydrogenase with nicotinamide adenine dinucleotide phosphate as co-enzyme. Biochemical Journal 95:311–320
    [Google Scholar]
  9. Finnerty W. R. 1977; The biochemistry of microbial alkane oxidation: new insights and perspectives. Trends in Biochemical Sciences 2:73–75
    [Google Scholar]
  10. Finnerty W. R. 1988; Lipids of Acinetobacter. In Proceedings of the World Conference on Biotechnology for the Fats and Oils Industry pp. 184–188 Edited by Applewhite T. H. Champaign, Illinois: American Oil Chemists’ Society;
    [Google Scholar]
  11. Finnerty W. R., Kallio R. E., Klimstra P. D., Wawzonez S. 1962; Utilization of 1-alkyl hydroperoxides by Micrococcus cerificans. Zeitschrift für allgemeine Mikrobiologie 2:263–266
    [Google Scholar]
  12. Fixter L. M., Nagi M. N., McCormack J. G., Fewson C. A. 1986; Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. Journal of General Microbiology 132:3147–3157
    [Google Scholar]
  13. Fukaya M., Tayama K., Okumura N., Kawamura Y., Beppu T. 1989; Purification and characterization of membrane-bound aldehyde dehydrogenase from Acetobacter polyoxogenes sp. nov. Applied Microbiology and Biotechnology 32:176–180
    [Google Scholar]
  14. Hames B. D. 1981; An introduction to polyacrylamide gel electrophoresis. In Gel Electrophoresis of Proteins, a Practical Approach pp. 1–86 Edited by Hames B. D., Rickwood D. Oxford: IRL Press;
    [Google Scholar]
  15. Hart G. J., Dickinson F. M. 1982; Kinetic properties of highly purified preparations of sheep liver cytoplasmic aldehyde dehydrogenase. Biochemical Journal 203:617–627
    [Google Scholar]
  16. Hommel R., Kleber H.-P. 1990; Properties of the quinoprotein aldehyde dehydrogenase from ‘Acetobacter rancens’. Journal of General Microbiology 136:1705–1711
    [Google Scholar]
  17. Jayasuriya G. C. N. 1955; The isolation and characteristics of an oxalate-decomposing organism. Journal of General Microbiology 12:419–428
    [Google Scholar]
  18. Jirausch M., Asperger O., Kleber H. P. 1986; Alcohol oxidation by Acinetobacter calcoaceticus EB 104, a n-alkane-utilizing and cytochrome P-450 producing strain. Journal of Basic Microbiology 26:351–357
    [Google Scholar]
  19. Kemp G. D., Dickinson F. M., Ratledge C. 1988; Inducible long-chain alcohol oxidase from alkane-grown Candida tropicalis. Applied Microbiology and Biotechnology 29:370–374
    [Google Scholar]
  20. Kleber H. P., Claus R., Asperger O. 1983; Enzymologie der n-Alkanoxidation bei Acinetobacter. Acta Biotechnologie 3:251–260
    [Google Scholar]
  21. Van der Linden A. C., Huybregste R. 1969; Occurrence of inducible and NAD(P)-independent primary alcohol dehydrogenase in alkane-oxidizing Pseudomonas. Antonie van Leeuwenhoek 35:344–360
    [Google Scholar]
  22. MacGibbon A. K. H., Blackwell L. F., Buckley P. D. 1977; Kinetics of sheep liver cytoplasmic aldehyde dehydrogenase. European Journal of Biochemistry 77:93–100
    [Google Scholar]
  23. Makula R., Finnerty W. R. 1968; Microbial assimilation of hydrocarbons. 1. Fatty acids derived from normal alkanes. Journal of Bacteriology 95:2102–2107
    [Google Scholar]
  24. Marison I. W., Attwood M. M. 1980; Partial purification and characterization of a dye-linked formaldehyde dehydrogenase from Hyphomicrobium X. Journal of General Microbiology 117:305–313
    [Google Scholar]
  25. Michaelis L., Granick S. 1943; The polymerization of the free radicals of the Würster dye type: the dimeric resonance bond. Journal of the American Chemical Society 65:1747–1755
    [Google Scholar]
  26. Poels P. A., Groen B. W., Duine J. A. 1987; NAD(P)+-independent aldehyde dehydrogenases from Pseudomonas testosteroni. European Journal of Biochemistry 166:575–579
    [Google Scholar]
  27. Scott C. C. L., Finnerty W. R. 1976; Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbonoxidizing Acinetobacter species HOl-N. Journal of Bacteriology 127:481–489
    [Google Scholar]
  28. Singer M. E., Finnerty W. R. 1985a; Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HOl-N: role in hexadecane and hexadecanol metabolism. Journal of Bacteriology 164:1011–1016
    [Google Scholar]
  29. Singer M. E., Finnerty W. R. 1985b; Alcohol dehydrogenases in Acinetobacter sp. strain HOl-N: role in hexadecane and hexadecanol metabolism. Journal of Bacteriology 164:1017–1024
    [Google Scholar]
  30. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150:76–85
    [Google Scholar]
  31. Sorger D. H., Aurich H. 1978; Mikrobielle Aldehyddehydrogenasen und ihre Bedeutung fur die Assimilation aliphatischen Kohlenwasserstoffe. Wissenschaftliche Zeitschrift der Karl-Marx-Universitat Leipzig, Mathematisch-Naturwissenschaftliche Reihe 27:35–45
    [Google Scholar]
  32. Tassin J. P., Celier C., Vandecasteele J. P. 1973; Purification and properties of a membrane-bound alcohol dehydrogenase involved in oxidation of long-chain hydrocarbons by Pseudomonas aeruginosa. Biochimica et Biophysica Acta 315:220–232
    [Google Scholar]
  33. Tauchert H., Roy M. L., Schӧpp W., Aurich H. 1975; Pyridinnucleotid-unabhängige oxydation von langerkettigen aliphatischen Alkoholen durch ein Enzyme aus Acinetobacter calcoaceticus. Zeitschrift für allgemeine Mikrobiologie 15:457–460
    [Google Scholar]
  34. Zehr B. D., Savin T. J., Hall R. E. 1989; A one-step, low background coomassie staining procedure for polyacrylamide gels. Analytical Biochemistry 182:157–159
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-9-1963
Loading
/content/journal/micro/10.1099/00221287-138-9-1963
Loading

Data & Media loading...

Most cited Most Cited RSS feed