1887

Abstract

Xylose reductase (EC 1.1.1.21) from the yeast NRC 2548 was purified to homogeneity via a two-step protocol using anion-exchange and gel-filtration chromatography. The pH-activity profile revealed the presence of two ionizable groups with p values of 5.8 and 8.1, suggesting the catalytic involvement of histidyl and thiol groups, respectively. Additional evidence supporting the involvement of these residues was provided by the use of group-specific inhibitors. The enzyme was rapidly inactivated in a pseudo-first order manner by the thiol-specific modifier -chloromercuriphenylsulphonate (PMBS) and analysis of the order-of-reaction suggested that one essential cysteine residue was modified to effect inactivation. Treatment of the enzyme with another thiol-specific modifier, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), showed that modification of one cysteine per monomer led to 90% loss of activity, further supporting the existence of one essential cysteine residue. Inactivation by PMBS was reversed by adding 1 m-β-mercaptoethanol. Inactivation of xylose reductase by the histidine-specific modifier diethylpyrocarbonate (DEP) followed a pseudo-first order process, and analysis of the order-of-reaction suggested that one essential histidine residue was modified to effect inactivation. Treatment of DEP-inactivated enzyme with 0.2 M-neutral hydroxylamine resulted in the recovery of 45% of enzyme activity. Protection of xylose reductase from PMBSand DEP-inactivation was provided by NADPH and NADH but not by NADP, D-xylose or DL-glyceraldehyde. This suggests that the essential histidine and cysteine residues may be involved with binding of cofactor by the xylose reductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-9-1857
1992-09-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/9/mic-138-9-1857.html?itemId=/content/journal/micro/10.1099/00221287-138-9-1857&mimeType=html&fmt=ahah

References

  1. Amore R., Kotter P., Kuster C., Ciriacy M., Hollenberg C. P. 1991; Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYLl) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97
    [Google Scholar]
  2. Bhatnagar A., Liu S., Das B., Srivastava S. K. 1989; Involvement of sulphhydryl residues in aldose reductase-inhibitor interaction. Molecular Pharmacology 36:825–830
    [Google Scholar]
  3. Bicho P. A., Runnals P. L., Cunningham J. D., Lee H. 1988; Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Applied and Environmental Microbiology 54:50–54
    [Google Scholar]
  4. Bolen P. L., Bietz J. A., Detroy R. W. 1985; Aldose reductase in the yeast Pachysolen tannophilus: purification, characterization and N-terminal sequence. Biotechnology and Bioengineering Symposium 15:129–148
    [Google Scholar]
  5. Bolen P. L., Roth K. A., Freer S. N. 1986; Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus. Applied and Environmental Microbiology 52:660–664
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Bruinenberg P. M., de Bot P. H. M., van Dijken J. P., Scheffers W. A. 1984; NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology 19:256–260
    [Google Scholar]
  8. Burstein Y., Walsh K. A., Neurath H. 1974; Evidence of an essential histidine residue in thermolysin. Biochemistry 13:205–210
    [Google Scholar]
  9. Cardemil E. 1987; Kinetics of the chemical modification of enzymes. In Chemical Modification of Enzymes. Active Site Studies pp. 23–34 Edited by Eyzaguirre J. Chichester: Ellis Horwood;
    [Google Scholar]
  10. Cromlish J. A., Flynn T. G. 1983; Purification and characterization of two aldose reductase isoenzymes from rabbit muscle. Journal of Biological Chemistry 258:3416–3424
    [Google Scholar]
  11. Das B., Srivastava S. K. 1985; Purification and properties of aldose and aldehyde reductase II from human erythrocyte. Archives of Biochemistry and Biophysics 238:670–679
    [Google Scholar]
  12. Davidson W. S., Flynn T. G. 1979; A functional arginine residue in NADPH-dependent aldehyde reductase from pig kidney. Journal of Biological Chemistry 254:3724–3729
    [Google Scholar]
  13. Ditzelmuller G., Kubicek C. P., Wohrer W., Rohr M. 1984; Xylose metabolism in Pachysolen tannophilus: purification and properties of aldose reductase. Canadian Journal of Microbiology 30:1330–1336
    [Google Scholar]
  14. Doughty C. C., Conrad S. M. 1982; A reaction mechanism for aldose reductase from lens. Biochimica et Biophysica Acta 708:358–364
    [Google Scholar]
  15. Doughty C. C., Lee S., Conrad S. M., Schade S. 1982; Kinetic mechanism and structural properties of lens aldose reductase. Progress in Clinical and Biological Research 114:223–242
    [Google Scholar]
  16. Ellman G. L. 1959; Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82:70–77
    [Google Scholar]
  17. Engel P. C. 1977; Enzyme Kinetics. The Steady-State Approach London: Chapman and Hall;
    [Google Scholar]
  18. Evans C. T., Ratledge C. 1984; Induction of xylulose-5-phosphoketolase in a variety of yeasts grown on d-xylose: the key to efficient xylose metabolism. Archives of Microbiology 139:48–52
    [Google Scholar]
  19. Flynn T. G., Ferguson D., Davidson W. S. 1981; Functional groups in pig kidney aldehyde reductase. In Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects pp. 601–610 Edited by Usdin E., Weiner N., Youdin M. New York: Macmillan Press;
    [Google Scholar]
  20. Flynn T. G., Charington B., Lyons C., Chao H., Hyndman D., Morjana N. 1989; Chemical modification of aldehyde and aldose reductase by pyridoxal 5′-phosphate. In Enzymology and Molecular Biology of Carbonyl Metabolism 2 pp. 251–264 Edited by Weiner H., and Flynn T. G. New York: Alan R. Liss;
    [Google Scholar]
  21. Hagedorn J., Ciriacy M. 1989; Isolation and characterization of xyl mutants in a xylose-utilizing yeast, Pichia stipitis. Current Genetics 16:27–33
    [Google Scholar]
  22. Hallborn J., Walfridsson M., Airaksinen U., Ojamo H., Hahn-Hagerdal B., Penttila M., Keranen S. 1991; Xylitol production by recombinant Saccharomyces cerevisiae. Bio/Technology 9:1090–1095
    [Google Scholar]
  23. Ho N. W. Y., Lin F. P., Huang S., Andrews P. C., Tsao G. T. 1990; Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme and Microbial Technology 12:33–39
    [Google Scholar]
  24. Jedziniak J. A., Kinoshita J. H. 1971; Activators and inhibitors of lens aldose reductase. Investigative Ophthalmology 10:357–366
    [Google Scholar]
  25. Kador P. F., Sharpless N. E., Kinoshita J. H. 1985; Aldose reductase inhibitors: A potent new class of agents for the pharmacological control of certain diabetic complications. Journal of Medicinal Chemistry 28:841–849
    [Google Scholar]
  26. Kersters-Hilderson H., Van Doorslaer E., Lippens M., De Bruyne C. K. 1984; The pH dependence and group modification of β-d-xylosidase from Bacillus pumilus: Evidence for sulphhydryl and histidyl groups. Archives of Biochemistry and Biophysics 234:61–72
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  28. Lee H., James A. P., Zahab D. M., Mahmourides G., Maleszka R., Schneider H. 1986; Mutants of Pachysolen tannophilus with improved production of ethanol from d-xylose. Applied and Environmental Microbiology 51:1252–1258
    [Google Scholar]
  29. Lenard N. J., McDonald J. J., Henderson R. E. L., Reichmann M. E. 1971; Reaction of diethyl pyrocarbonate with nucleic acid components. Adenosine. Biochemistry 10:3335–3342
    [Google Scholar]
  30. Levy H. M., Leber P. D., Ryan E. M. 1963; Inactivation of myosin by 2,4-dinitrophenol and protection by adenosine triphosphate and other phosphate compounds. Journal of Biological Chemistry 238:3654–3659
    [Google Scholar]
  31. Liu S., Bhatnagar A., Das B., Srivastava S. K. 1989; Functional cysteinyl residues in human placental aldose reductase. Archives of Biochemistry and Biophysics 275:112–121
    [Google Scholar]
  32. Miles E. W. 1977; Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods in Enzymology 47:431–443
    [Google Scholar]
  33. Rizzi M., Erlemann P., Bui-Thanh N.-A., Dellweg H. 1988; Xylose fermentation by yeasts 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Applied Microbiology and Biotechnology 29:148–154
    [Google Scholar]
  34. Scher B. M., Horecker B. L. 1966; Pentose metabolism in Candida III. The triphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis. Archives of Biochemistry and Biophysics 116:117–128
    [Google Scholar]
  35. Schneider H. 1989; Conversion of pentoses to ethanol by yeasts and fungi. Critical Reviews in Biotechnology 9:1–40
    [Google Scholar]
  36. Schneider H., Lee H., Barbosa M. de F. S., Kubicek C. P., James A. P. 1989; Physiological properties of a mutant of Pachysolen tannophilus deficient in NADPH-dependent d-xylose reductase. Applied and Environmental Microbiology 55:2877–2881
    [Google Scholar]
  37. Scrutton M., Utter M. 1965; Pyruvate carboxylase V. Interaction of the enzyme with adenosine triphosphate. Journal of Biological Chemistry 240:3714–3723
    [Google Scholar]
  38. Skoog K., Hahn-Hagerdal B. 1988; Xylose fermentation. Enzyme and Microbial Technology 10:66–80
    [Google Scholar]
  39. Suzuki T., Onishi H. 1975; Purification and properties of polyol: NADP oxidoreductase from Pichia quercuum. Agricultural and Biological Chemistry 39:2389–2397
    [Google Scholar]
  40. Takuma S., Nakashima N., Tantirungkij M., Kinoshita S., Okada H., Seki T., Yoshida T. 1991; Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology 28/29:327–340
    [Google Scholar]
  41. Verduyn C., van Kleef R., Frank J., Schreuder H., van Dijken J. P., Scheffers W. A. 1985; Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemical Journal 226:669–677
    [Google Scholar]
  42. Watson J. A., Hayashi J. A., Schuytema E., Doughty C. C. 1969; Identification of reduced nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductase in a Rhodotorula strain. Journal of Bacteriology 100:110–116
    [Google Scholar]
  43. Webb S. R., Lee H. 1990; Regulation of d-xylose utilization by hexoses in pentose-fermenting yeasts. Biotechnology Advances 8:685–697
    [Google Scholar]
  44. Webb S. R., Lee H. 1991; Inhibitors of xylose reductase from the yeast Pichia stipitis. Applied Biochemistry and Biotechnology 30:325–337
    [Google Scholar]
  45. Wermuth B., Burgisser H., Bohren K., van Wartburg J. A. 1982; Purification and characterization of human brain aldose reductase. European Journal of Biochemistry 127:279–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-9-1857
Loading
/content/journal/micro/10.1099/00221287-138-9-1857
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error