1887

Abstract

A variety of cobalamin analogues synthesized chemically or microbiologically were used to study the corrinoid specificities of cell growth and the cobalamin uptake system in z. Although could not utilize most of the analogues for cell growth, benzimidazolyl cobamide, cyanocobalamin- -phosphate, and cyanocobalamin--, --and --monocarboxylates had effects similar to that of cyanocobalamin on cell growth. It is suggested that cells have the ability to synthesize ‘complete cobalamin’ from the acid derivatives (amidation reaction) and/or the phosphate derivative (dephosphorylation reaction). Inhibition of uptake of radiolabelled cyanocobalamin caused by addition of various analogues indicates that both the α-lower axial ligand (the cobalt-coordinated nucleotide) and the ()-propionamide side-chain of the cobalamin molecule are essential for the cobalamin uptake system in . These results indicate that there are different corrinoid specificities for cell growth and the cobalamin uptake system in z.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-9-1807
1992-09-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/9/mic-138-9-1807.html?itemId=/content/journal/micro/10.1099/00221287-138-9-1807&mimeType=html&fmt=ahah

References

  1. Abeles R. H., Lee H. A. Jr 1961; An intramolecular oxidation–reduction requiring a cobamide coenzyme. Journal of Biological Chemistry 236:2347–2535
    [Google Scholar]
  2. Anton D. L., Hogenkamp H. P. C., Walker T. E., Matwiyoff N. A. 1980; Carbon-13-nuclear magnetic resonance studies of the monocarboxylic acids of cyanocobalamin: assignments of the b-, d-, and e-monocarboxylic acids. Journal of the American Chemical Society 102:2215–2219
    [Google Scholar]
  3. Bonnett R., Cannon J. R., Clark V. M., Johnson A. W., Parker L. F. J., Smith E. L., Todd A. 1957; Chemistry of the vitamin B12 group. V The structure of the chromophoric grouping. Journal of the American Chemical Society1158–1168
    [Google Scholar]
  4. Bonnett R., Godfrey J. M., Math V. B., Edmond E., Evans H., Hodder O. J. R. 1971a; Neovitamin B12 identified. Nature, London 229:473–476
    [Google Scholar]
  5. Bonnett R., Godfrey J. M., Math V. B. 1971b; Cyano-13-epicobalamin (neovitamin B12) and its relatives. Journal of the Chemical Society3736–3747
    [Google Scholar]
  6. Bradbeer C. 1971; Transport of vitamin B12 in Ochromonas malhamensis. Archives of Biochemistry and Biophysics 144:184–197
    [Google Scholar]
  7. Bradbeer C., Woodrow M. L. 1976; Transport of vitamin B12 in Escherichia coli: energy dependence. Journal of Bacteriology 128:99–104
    [Google Scholar]
  8. Debussche L., Thibaut D., Cameron B., Crouzet J., Blance F. 1990; Purification and characterization of cobyrinic acid a,c-di-amide synthase from Pseudomonas denitrificans. Journal of Bacteriology 172:6239–6244
    [Google Scholar]
  9. DiGirolamo P. M., Bradbeer C. 1971; Transport of vitamin B12 in Escherichia coli. Journal of Bacteriology 106:745–750
    [Google Scholar]
  10. Friedmann H. C. 1971; Synthesis of vitamin B12 5′-phosphate. Methods in Enzymology 18C:54–57
    [Google Scholar]
  11. Friedrich W. 1964; Vitamin B12. In Biochemisches Taschenbuch p. 708 Edited by Rauen H. M. Berlin: Springer-Verlag;
    [Google Scholar]
  12. Friedrich W., Heinrich H. C., Konigk E., Schulze P. 1964; Chemical synthesis and some biological properties of the coenzyme forms of an alkanolamine-type B12-antivitamin. Annals of the New York Academy of Sciences 112:601–614
    [Google Scholar]
  13. Isegawa Y., Nakano Y., Kitaoka S. 1984; Conversion and distribution of cobalamin in Euglena gracilis z, with special reference to its location and probable function within chloroplasts. Plant Physiology 76:814–818
    [Google Scholar]
  14. Koren L. E., Hutner S. H. 1967; High-yield media for photosynthesizing Euglena gracilis. Journal of Protozoology 14:Suppl.17
    [Google Scholar]
  15. Kung H. F., Stadmann T. C. 1971; Nicotinic acid metabolism. IV. Purification and properties of α-methyleneglutarate mutase (B12-dependent) and methylitaconate isometase. Journal of Biological Chemistry 246:3378–3388
    [Google Scholar]
  16. Lengyel P., Mazumder R., Ochoa S. 1960; Mammalian methylmalonyl isomerase and vitamin B12 coenzymes. Proceedings of the National Academy of Sciences of the United States of America 46:1312–1318
    [Google Scholar]
  17. Nakano Y., Urade Y., Urade R., Kitaoka S. 1987; Isolation, purification, and characterization of the pellicle of Euglena gracilis z. Journal of Biochemistry 102:1053–1063
    [Google Scholar]
  18. Renz P. 1971; Some intermediates in the biosynthesis of vitamin B12. Methods in Enzymology 18C:82–92
    [Google Scholar]
  19. Ross G. I. M. 1952; Vitamin B12 assay in body fluids using Euglena gracilis. Journal of Clinical Pathology 5:250–256
    [Google Scholar]
  20. Sarhan F., Houde M., Cheneval J. P. 1980; The role of vitamin B12 binding in the uptake of the vitamin by Euglena gracilis. Journal of Protozoology 27:235–238
    [Google Scholar]
  21. Schneider Z., Friedmann H. C. 1972; Studies on the enzymatic dephosporylation of vitamin B12 5′-phosphate. Archives of Biochemistry and Biophysics 152:488–492
    [Google Scholar]
  22. Shigeoka S., Onishi T., Nakano Y., Kitaoka S. 1987; Requirement for vitamin B1 for growth of Euglena gracilis. Journal of General Microbiology 133:25–30
    [Google Scholar]
  23. Stupperich E., Krautler B. 1988; Pseudovitamin B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Archives of Microbiology 149:268–271
    [Google Scholar]
  24. Stupperich E., Steiner I., Ruhlemann M. 1986; Isolation and analysis of bacterial cobamides by high-performance liquid chromatography. Analytical Biochemistry 155:365–370
    [Google Scholar]
  25. Stupperich E., Eisinger H. J., Krautler B. 1988; Diversity of corrinoids in acetogenic bacteria, p-cresolyl cobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolyl cobamide from Clostridium woodii. European Journal of Biochemistry 172:459–464
    [Google Scholar]
  26. Stupperich E., Einsinger H. J., Schurr S. 1990; Corrinoids in anaerobic bacteria. FEMS Microbiology Reviews 87:355–360
    [Google Scholar]
  27. Tkachuck R. D., Grant M. E., Hogenkamp H. P. C. 1974; Synthesis and properties of adenosyl- and methylepicobalamin. Biochemistry 13:2643–2654
    [Google Scholar]
  28. Toraya T., Krodel E., Mildvan A. S., Abeles R. H. 1979; Role of peripheral side chains of vitamin B12 coenzymes in the reaction catalyzed by diol dehydrase. Biochemistry 18:417–426
    [Google Scholar]
  29. Toraya T., Ohashi K., Ueno H., Fukui S. 1975a; Preparation, properties and biological activities of succinyl derivatives of vitamin B12. Bioinorganic Chemistry 4:245–255
    [Google Scholar]
  30. Toraya T., Shirakashi T., Fukui S., Hogenkamp H. P. C. 1975b; Coenzyme action of adenosyl-13-epicobalamin in the diol dehydrase system. Biochemistry 14:3949–3952
    [Google Scholar]
  31. Yamada R. H., Hogenkamp H. P. C. 1972; The synthesis of a 5′-deoxyadenosylcobalamin–agarose absorbent and its utility in the purification of ribonucleotide reductase. Journal of Biological Chemistry 247:6266–6270
    [Google Scholar]
  32. Varma T. N. S., Abraham A., Hansen I. A. 1961; Accumulation of 58Co vitamin B12 by Euglena gracilis. Journal of Protozoology 8:212–216
    [Google Scholar]
  33. Watanabe F., Nakano Y. 1991; Comparative biochemistry of vitamin B12 (cobalamin) metabolism: biochemical diversity in the systems for intracellular cobalamin transfer and synthesis of the coenzymes. International Journal of Biochemistry 23:1354–1359
    [Google Scholar]
  34. Watanabe F., Nakano Y., Kitaoka S. 1987a; Isolation and some properties of soluble and membrane-bound cobalamin binding proteins of Euglena mitochondria. Archives of Microbiology 149:30–35
    [Google Scholar]
  35. Watanabe F., Nakano Y., Kitaoka S. 1987b; Purification and some properties of cytosolic cobalamin-binding protein in Euglena gracilis. Biochemical Journal 247:679–685
    [Google Scholar]
  36. Watanabe F., Ito T., Tabuchi T., Nakano Y., Kitaoka S. 1988a; Isolation of pellicular cobalamin-binding proteins of the cobalamin uptake system of Euglena gracilis. Journal of General Microbiology 134:67–74
    [Google Scholar]
  37. Watanabe F., Nakano Y., Kitaoka S. 1988b; Purification, some properties and possible physiological role of an extracellular cobalamin-binding protein from Euglena gracilis. Journal of General Microbiology 134:1385–1389
    [Google Scholar]
  38. Watanabe F., Nakano Y., Tamura Y., Yamanaka H. 1991; Vitamin B12 metabolism in a photosynthesizing green alga, Chlamydomonas reinhardtii. Biochimica et Biophysica Acta 1075:36–41
    [Google Scholar]
  39. White J. C., Digirolamo P. M., Fu M. L., Preston Y. A., Bradbeer C. 1973; Transport of vitamin B12 in Escherichia coli: location and properties of the initial B12-binding site. Journal of Biological Chemistry 248:3978–3986
    [Google Scholar]
  40. Wolken J. J. 1967 Euglena p. 24 New York: Meredith Publishing Company;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-9-1807
Loading
/content/journal/micro/10.1099/00221287-138-9-1807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error