1887

Abstract

Cytoplasmic/intracytoplasmic and outer membrane preparations of (Bath) were isolated by sucrose density gradient centrifugation of a total membrane fraction prepared by disruption using a French pressure cell. The cytoplasmic and/or intracytoplasmic membrane fraction consisted of two distinct bands, Ia and Ib (buoyant densities 1.16 and 1.18 g ml, respectively) that together contained 57% of the protein, 68% of the phospholipid, 73% of the ubiquinone and 89% of the CN-sensitive NADH oxidase activity. The only apparent difference between these two cytoplasmic bands was a much higher phospholipid content for Ia. The outer membrane fraction (buoyant density 1.23–1.24 g ml) contained 60% of the lipopolysaccharide-associated, β-hydroxypalmitic acid, 74% of the methylsterol, and 66% of the bacteriohopanepolyol (BHP); phospholipid to methyl sterol or BHP ratios were 6:1. Methanol dehydrogenase activity and a -type cytochrome were also present in this outer membrane fraction. Phospholipase A activity was present in both the cytoplasmic membrane and outer membrane fractions. The unique distribution of cyclic triterpenes may reflect a specific role in conferring outer membrane stability in this methanotrophic bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-8-1759
1992-08-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/8/mic-138-8-1759.html?itemId=/content/journal/micro/10.1099/00221287-138-8-1759&mimeType=html&fmt=ahah

References

  1. Anthony C. 1986; Bacterial oxidation of methane and methanol. In Advances in Microbial Physiology pp. 113–210 Edited by Rose A. H., Tempest D. W. London: Academic Press;
    [Google Scholar]
  2. Bayer M. E. 1979; The fusion sites between outer membrane and cytoplasmic membrane of bacteria: their role in membrane assembly and virus infection. In Bacterial Outer Membranes pp. 167–202 Edited by Inouye M. New York: John Wiley & Sons;
    [Google Scholar]
  3. Benz R., Hallmann D., Poralla K., Eibl H. 1983; Interaction of hopanoids with phosphatidylcholines containing oleic and ω-cyclohexyldodecanoic acid in lipid bilayer membranes. Chemistry and Physics of Lipids 34:7–24
    [Google Scholar]
  4. Bird C. W., Lynch J. M., Pirt S. J., Reid W. W., Brooks C. J. W., Middleditch B. S. 1971; Steroids and squalene in Methylococcus capsulatus grown on methane. Nature, London 230:473–474
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Canadian Journal of Biochemical Physiology 37:911–917
    [Google Scholar]
  6. BLOCH K. 1983; Sterol structure and membrane function. Critical Reviews in Biochemistry 14:47–92
    [Google Scholar]
  7. BOOTH B. R., Curtis N. A. C. 1977; Separation of the cytoplasmic and outer membrane of Pseudomonas aeruginosa PAO-1. Biochemical and Biophysical Research Communications 74:1168–1176
    [Google Scholar]
  8. Bowman J. P., Skerratt J. H., Nichols P. D., Sly L. I. 1991; Phospholipid fatty acid and lipopolysaccharide acid signature lipids in methane-utilizing bacteria. FEMS Microbiology Ecology 85:15–22
    [Google Scholar]
  9. Bringer S., Härtner T., Poralla K., Sahm H. 1985; Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis . Archives of Microbiology 140:312–316
    [Google Scholar]
  10. Chance B., Williams G. R. 1955; Respiratory enzymes in oxidative phosphorylation, II. Difference spectra. Journal of Biological Chemistry 217:395–407
    [Google Scholar]
  11. Chemina E. V., Trotsenko Y. A. 1981; Isolation and identification of Methylomonas methanica membranes. Microbiology 49:735–739
    [Google Scholar]
  12. Collins M. D. 1985; Isoprenoid quinone analyses in bacterial classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  13. Crane F. L., BARR R. 1971; Determination of ubiquinones. Methods in Enzymology 18:137–165
    [Google Scholar]
  14. Cullis P. R., Hope M. J. 1985; Physical properties and functional roles of lipids in membranes. In Biochemistry of Lipids and Membranes pp. 25–72 Edited by Vance D. E., Vance J. E. Menlo Park, California: Benjamin/Cummings Publishing Co;
    [Google Scholar]
  15. Dahl C. E., Dahl J. S., Bloch K. 1980; Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum . Biochemistry 19:1462–1467
    [Google Scholar]
  16. Davey J. F., Mitton J. R. 1973; Cytochromes of two methane-utilizing bacteria. FEBS Letters 37:335–337
    [Google Scholar]
  17. Davies S. L., Whittenbury R. 1970; Fine structure of methane and other hydrocarbon-utilizing bacteria. Journal of General Microbiology 61:227–232
    [Google Scholar]
  18. DeBoer W. E., Hazeu W. 1972; Observations on the fine structure of a methane-oxidizing bacterium. Antonie van Leeuwenhoek 38:33–47
    [Google Scholar]
  19. Dittmer J. C., Wells M. A. 1969; Quantitative and qualitative analysis of lipids and lipid components. Methods in Enzymology 14:482–530
    [Google Scholar]
  20. Ghosh R., Quayle J. R. 1981; Purification and properties of Methanol dehydrogenase from Methylophilus methylotrophus . Biochemical Journal 199:245–250
    [Google Scholar]
  21. Hancock I. C., Williams K. M. 1986; The outer membrane of Methylobacterium organophilum . Journal of General Microbiology 132:599–610
    [Google Scholar]
  22. Hyder S. L., Meyers A., Cayer M. L. 1979; Membrane modulation in a methylotrophic bacterium Methylococcus capsulatus (Texas) as a function of growth substrate. Tissue and Cell 11:597–610
    [Google Scholar]
  23. Ishidate K., Creeger E. S., Zrike J., Deb S., Glauner B., Macalister T. J., Rothfield L. I. 1986; Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. Journal of Biological Chemistry 261:428–443
    [Google Scholar]
  24. Jahnke L. L., Nichols P. D. 1986; Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. Journal of Bacteriology 167:238–242
    [Google Scholar]
  25. Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. 1978; A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Analytical Biochemistry 85:595–601
    [Google Scholar]
  26. Kates M. 1986; Techniques of lipidology: isolation, analysis and identification of lipids. In Laboratory Techniques in Biochemistry and Molecular Biology Vol. 3 Edited by Burbon R. H., van Knippenberg P. H. Amsterdam: Elsevier;
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  28. Macalister T. J., Macdonald B., Rothfield L. I. 1983; The periseptal annulus: an organelle associated with cell division in gram-negative bacteria. Proceedings of the National Academy of Sciences of the United States of America 80:1372–1376
    [Google Scholar]
  29. McDonald K. 1984; Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. Journal of Ultrastructure Research 86:107–118
    [Google Scholar]
  30. Makula R. A. 1978; Phospholipid composition of methane-utilizing bacteria. Journal of Bacteriology 134:771–777
    [Google Scholar]
  31. Monosov E. Z., Netrusov A. I. 1976; Localization of energy generators in methane-oxidizing bacteria. Microbiology 45:518–523
    [Google Scholar]
  32. Neunlist S., Rohmer M. 1985; Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica . Biochemical Journal 231:635–639
    [Google Scholar]
  33. Nichols P. D., Smith G. A., Antworth C. P., Hanson R. S., White D. W. 1985; Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria. FEMS Microbiology Ecology 31:327–335
    [Google Scholar]
  34. Nichols P. D., Mancuso C. A., White D. C. 1987; Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Organic Geochemistry 11:451–461
    [Google Scholar]
  35. O’Brien J. S., Rouser G. 1964; Analysis of hydroxy fatty acids by gas-liquid chromatography. Analytical Biochemistry 7:288–296
    [Google Scholar]
  36. Orndorff P. E., Dworkin M. 1980; Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus . Journal of Bacteriology 141:914–927
    [Google Scholar]
  37. Osborn M. J., Gander J. E., Paris E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium . Journal of Biological Chemistry 247:3962–3972
    [Google Scholar]
  38. Ourisson G., Rohmer M., Poralla K. 1987; Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology 41:301–333
    [Google Scholar]
  39. Patel R. N., Felix A. 1976; Microbial oxidation of methane and methanol: crystallization and properties of methanol dehydrogenase from Methylosinus sporium . Journal of Bacteriology 128:413–424
    [Google Scholar]
  40. Prior S. D., Dalton H. 1985; The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). Journal of General Microbiology 131:155–163
    [Google Scholar]
  41. Rohmer M., Bouvier P., Ourisson G. 1979; Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proceedings of the National Academy of Sciences of the United States of America 76:847–851
    [Google Scholar]
  42. Rohmer M., Bouvier P., Ourisson G. 1980; Non-specific lanosterol and hopanoid biosynthesis by a cell-free system from the bacterium Methylococcus capsulatus . European Journal of Biochemistry 112:557–560
    [Google Scholar]
  43. Rohmer M., Bouvier-Nave P., Ourisson G. 1984; Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology 130:1137–1150
    [Google Scholar]
  44. Saralov A. I., Krylova I. N., Saralova E. E., Kuznetsov S. I. 1985; Distribution and species composition of methane-oxidizing bacteria in lake waters. Microbiology 53:695–700
    [Google Scholar]
  45. Schnaitman C. A. 1970; Examination of the protein composition of the cell envelope of Escherichia coli by polyacrylamide gel electrophoresis. Journal of Bacteriology 104:882–889
    [Google Scholar]
  46. Scott C. C. L., Makula R. A., Finnerty W. R. 1976; Isolation and purification of membranes from a hydrocarbon-oxidizing Acinetobacter sp. Journal of Bacteriology 127:469–480
    [Google Scholar]
  47. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeker N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150:76–85
    [Google Scholar]
  48. Summons R. E., Jahnke L. L. 1992; Hopenes and hopanes methylated in ring-A: Correlation of the hopanoids from extant methylotrophic bacteria with their fossil analogues. In Biological Markers in Sediments and Petroleum pp. 182–200 Edited by Moldowan M. Englewood Cliffs, NJ: Prentice Hall;
    [Google Scholar]
  49. Thomas D. S., Hossack J. A., Rose A. H. 1978; Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae . Archives for Microbiology 117:239–245
    [Google Scholar]
  50. Tonge G. M., Knowles C. J., Harrison D. E. F., Higgins I. J. 1974; Metabolism of one carbon compounds: cytochromes of methane- and methanol-utilizing bacteria. FEBS Letters 44:106–110
    [Google Scholar]
  51. Wadzinski A. M., Ribbons D. W. 1975; Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase. Journal of Bacteriology 122:1364–1374
    [Google Scholar]
  52. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62
    [Google Scholar]
  53. Wood P. M. 1984; Bacterial proteins with CO-binding b- or c-type haem functions and absorption spectroscopy. Biochimica et Biophysica Acta 768:293–317
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-8-1759
Loading
/content/journal/micro/10.1099/00221287-138-8-1759
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error