1887

Abstract

The functioning of the alanine/-alanyl--alanine pathway of was investigated by determining prefnsor pool levels and specific enzyme activities under various growth conditions. Cells grown on - or -alanine showed several remarkable features compared with cells grown on other carbon sources: 10-fold higher values of the -alanyl--alanine and the UDP-MurNAc-pentapeptide pools, a 240-fold increase of the alanine racemase activity, and the absence of bacteriolysis after treatment with -cycloserine at high concentrations (50 μg ml). In cells grown on glucose, -cycloserine (1 μg ml) led to depletion of the -alanyl--alanine pool and to lysis, which was efficiently antagonized by chloramphenicol. A threefold increase of the dipeptide pool was observed when cells were treated with chloramphenicol alone. The alanine racemase activity was lowest in glucose-grown cells and the -alanine: -alanine ligase and -alanyl--alanine-adding activities were the same whatever the carbon source. Molecular masses of 53–56 kDa and 56–60 kDa were estimated for the partially purified inducible alanine racemase and -alanine: -alanine ligase respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-8-1751
1992-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/8/mic-138-8-1751.html?itemId=/content/journal/micro/10.1099/00221287-138-8-1751&mimeType=html&fmt=ahah

References

  1. Brock T. D. 1961; Chloramphenicol. Bacteriological Reviews 25:32–48
    [Google Scholar]
  2. Duncan K., van Heijenoort J., Walsh C. T. 1990; Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coli . Biochemistry 29:2379–2386
    [Google Scholar]
  3. Franklin F. C. H., Venables W. A. 1976; Biochemical, genetic and regulatory studies of alanine catabolism in Escherichia coli K12. Molecular and General Genetics 149:229–237
    [Google Scholar]
  4. Gondre B., Flouret B., van Heijenoort J. 1973; Release of D-alanyl-D-alanine from the precursor of the cell wall peptidoglycan by a peptidase of Escherichia coli K-12. Biochimie 55:685–691
    [Google Scholar]
  5. Höltje J. V., Tuomanen E. I. 1991; The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo . Journal of General Microbiology 137:441–454
    [Google Scholar]
  6. Ishiguro E. E., Ramey W. D. 1978; Involvement of the relA gene product and feedback inhibition in the regulation of UDP-Ar-acetylmuramyl-peptide synthesis in Escherichia coli . Journal of Bacteriology 135:766–774
    [Google Scholar]
  7. Lambert M. P., Neuhaus F. C. 1972a; Factors affecting the level of alanine racemase in Escherichia coli . Journal of Bacteriology 109:1156–1161
    [Google Scholar]
  8. Lambert M. P., Neuhaus F. C. 1972b; Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. Journal of Bacteriology 110:978–987
    [Google Scholar]
  9. Leduc M., Kasra R., van Heijenoort J. 1982; Induction and control of the autolytic system of Escherichia coli . Journal of Bacteriology 152:26–34
    [Google Scholar]
  10. Lugtenberg E. J. J. 1972; Studies on Escherichia coli enzymes involved in the synthesis of uridine diphosphate-A N-acetylmuramyl-pentapeptide. Journal of Bacteriology 110:26–34
    [Google Scholar]
  11. Lugtenberg E. J. J., van Schijndel-van Dam A. 1973; Temperature-sensitive mutant of Escherichia coli K12 with an impaired D-alanine: D-alanine ligase. Journal of Bacteriology 113:96–104
    [Google Scholar]
  12. Lugtenberg E. J. J., De Haas-Menger L., Ruyters W. H. M. 1972; Murein synthesis and identification of cell wall precursors of temperature-sensitive lysis mutants of Escherichia coli . Journal of Bacteriology 109:585–592
    [Google Scholar]
  13. Mengin-Lecreulx D., van Heijenoort J. 1985; Effect of growth conditions on peptidoglycan content and cytoplasmic steps of its biosynthesis in Escherichia coli . Journal of Bacteriology 163:208–212
    [Google Scholar]
  14. Mengin-Lecreulx D., van Heijenoort J. 1990; Correlation between the effects of fosfomycin and chloramphenicol on Escherichia coli . FEMS Letters 66:129–134
    [Google Scholar]
  15. Mengin-Lecreulx D., Flouret F., van Heijenoort J. 1982; Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli . Journal of Bacteriology 151:1109–1117
    [Google Scholar]
  16. Mengin-Lecreulx D., Flouret B., van Heijenoort J. 1983; Pool levels of UDP-7V-acetyIglucosamine and UDP-jV-acetylglucos-amine-enolpyruvate in Escherichia coli and correlation with peptidoglycan synthesis. Journal of Bacteriology 154:1284–1290
    [Google Scholar]
  17. Mengin-Lecreulx D., Siegel E., van Heijenoort J. 1989; Variations in UDP-JV-acetylglucosamine and UDP-iV-acetylmur-amyl-pentapeptide pools in Escherichia coli after inhibition of protein synthesis. Journal of Bacteriology 171:3282–3287
    [Google Scholar]
  18. Neuhaus F. C., Carpenter C. V., Lambert M. P., Wargel R. J. 1972; D-Cycloserine as a tool in studying the enzymes in the alanine branch of peptidoglycan synthesis. In Molecular Mechanisms of Antibiotic Action on Protein Synthesis and Membranes pp. 339–362 Edited by Munoz E., Garcia-Ferrandiz F., Vazquez D. Amsterdam: Elsevier;
    [Google Scholar]
  19. Park J. T. 1987; Murein synthesis. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 663–671 Edited by Neidhardt C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Robinson A. C., Kenan D. J., Sweeney J., Donachie W. D. 1986; Further evidence for overlapping transcriptional units in an Escherichia coli cell envelope-cell division gene cluster: DNA sequence and transcriptional organization of the ddl ftsQ region. Journal of Bacteriology 167:809–817
    [Google Scholar]
  21. Rogers H. J., Perkins H. R., Ward J. B. 1980 Microbial Cell Walls and Membranes London: Chapman & Hall;
    [Google Scholar]
  22. Wang E., Walsh C. 1978; Suicide substrates for the alanine racemase of Escherichia coli B. Biochemistry 17:1313–1321
    [Google Scholar]
  23. Wellner D., Lichtenberg L. A. 1971; Assay of amino acid oxidase. Methods in Enzymology 17B:593–600
    [Google Scholar]
  24. Wijsman H. J. W. 1972; The characterization of an alanine racemase mutant of Escherichia coli . Genetical Research 20:269–277
    [Google Scholar]
  25. Wild J., Obrepalska B. 1982; Regulation of expression of the dad A gene encoding D-amino acid dehydrogenase in Escherichia coli: analysis of dadA-lac fusions and direction of dad A transcription. Molecular and General Genetics 186:405–410
    [Google Scholar]
  26. Wild J., Henning J., Lobocka M., Walczak W., Klopotowski T. 1985; Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Molecular and General Genetics 198:315–322
    [Google Scholar]
  27. Zawadzke L. E., Bugg T. D. H., Walsh C. T. 1991; Existence of two D-alanine: D-alanine ligases in Escherichia coli: cloning and sequencing of the ddl A gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 30:1673–1682
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-8-1751
Loading
/content/journal/micro/10.1099/00221287-138-8-1751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error