1887

Abstract

α-Amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1) of apparent molecular mass 45 kDa was secreted by pv. grown in medium containing starch or maltose. We isolated its structural gene from a recombinant λ library and located it on a 2.7 kb DNA fragment. Nucleotide sequencing of the fragment revealed a potential ORF encoding a protein of 475 amino acid residues, including a potential signal sequence of 35 amino acids. The signal processing site was confirmed by N-terminal amino acid sequence analysis of the exported α-amylase. The deduced amino acid sequence of the mature protein is very similar to that of the α-amylase of . It also contains all four amino acid sequences highly conserved in the α-amylases from a wide range of organisms. Expression of the gene in was poor from its own promoter, but was enhanced by the upstream promoter on the vector. The α-amylase synthesized in was located in the periplasm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-8-1647
1992-08-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/8/mic-138-8-1647.html?itemId=/content/journal/micro/10.1099/00221287-138-8-1647&mimeType=html&fmt=ahah

References

  1. Andro T., Chambost J.-P., Kotoujansky A., Cattaneo J., Bertheau Y., Barras F., van Gijsegem F., Coleno A. 1984; Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. Journal of Bacteriology 160:1199–1203
    [Google Scholar]
  2. Arber W., Enquist L., Hohn B., Murray N. E., Murray K. 1983; Experimental methods for use with lambda. In Lambda II pp. 433–466 Edited by Hendrix R. W., Roberts J. W., Stahl F. W., Weisberg R. A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  3. Boer P. H., Hickey D. A. 1986; The α-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Research 14:8399–8411
    [Google Scholar]
  4. Bradbury J. F. 1984; Genus II. Xanthomonas Dowson 1939, 187AL . In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Chu S. T., Tseng Y. H. 1981; Release of alkaline phosphatase from cells of Xanthomonas oryzae by manipulation of surface permeability. Chinese Journal of Microbiology and Immunology 14:156–166
    [Google Scholar]
  6. Cohen S. N., Chang A. C. Y., Hsu L. 1972; Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escheri-chia coli by R factor DNA. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2114
    [Google Scholar]
  7. Daniels M. J., Barber C. E., Turner P. C., Cleary W. G., Sawczyc M. K. 1984; Isolation of mutants of Xanthomonas campestris pv. campestris showing altered pathogenicity. Journal of General Microbiology 130:2447–2455
    [Google Scholar]
  8. Dow J. M., Scofield G., Trafford K., Turner P. C., Daniels M. J. 1987; A gene cluster in Xanthomonas campestris pv. campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes. Physiological and Molecular Plant Pathology 31:261–271
    [Google Scholar]
  9. Felmlee T., Pellett S., Lee E.-Y., Welch R. A. 1985; Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide. Journal of Bacteriology 163:88–93
    [Google Scholar]
  10. Freudlieb S., Boos W. 1986; α-Amylase of Escherichia coli, mapping and cloning of the structural gene, malS, and identification of its product as a periplasmic protein. Journal of Biological Chemistry 261:2946–2953
    [Google Scholar]
  11. Frischauf A. M., Lehrach H., Poustka A., Murray N. 1983; Lambda replacement vectors carrying polylinker sequences. Journal of Molecular Biology 170:827–842
    [Google Scholar]
  12. Gobius K. S., Pemberton J. M. 1988; Molecular cloning, characterization, and nucleotide sequence of an extracellular amylase gene from Aeromonas hydrophila . Journal of Bacteriology 170:1325–1332
    [Google Scholar]
  13. Gough C. L., Dow J. M., Keen J., Henrissat B., Daniels M. J. 1990; Nucleotide sequence of the engXCA gene encoding the major endoglucanase of Xanthomonas campestris pv. campestris . Gene 89:53–59
    [Google Scholar]
  14. Gray L., Mackman N., Nicaud J.-M., Holland I. B. 1986; The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin from Escherichia coli . Molecular and General Genetics 205:127–133
    [Google Scholar]
  15. Hagenbuechle O., Bovey R., Young R. A. 1980; Tissue specific expression of mouse α-amylase genes: nucleotide sequence of isozyme mRNAs from pancreas and salivary gland. Cell 21:179–187
    [Google Scholar]
  16. von Heijne G. 1985; Signal sequences: the limits of variation. Journal of Molecular Biology 184:99–105
    [Google Scholar]
  17. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  18. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  19. Hirst T. R., Holmgren J. 1987; Transient entry of enterotoxin subunits into the periplasm occurs during their secretion from Vibrio cholerae . Journal of Bacteriology 169:1037–1045
    [Google Scholar]
  20. Hirst T. R., Welch R. A. 1988; Mechanisms for secretion of extracellular proteins by Gram-negative bacteria. Trends in Biochemical Science 13:265–269
    [Google Scholar]
  21. Hohn B., Murray K. 1977; Packaging recombinant DNA molecules into bacteriophage particles in vitro . Proceedings of the National Academy of Sciences of the United States of America 74:3259–3263
    [Google Scholar]
  22. Holland I. B., Blight M. A., Kenny B. 1990; The mechanism of secretion of hemolysin and other polypeptides from Gram-negative bacteria. Journal of Bioenergetics and Biomembranes 22:473–491
    [Google Scholar]
  23. Howard S. P., Buckley J. T. 1983; Intracellular accumulation of extracellular proteins by pleiotropic export mutants of Aeromonas hydrophila . Journal of Bacteriology 154:413–418
    [Google Scholar]
  24. Hu N.-T., Hung M.-N., Chiou S.-J., Tang F., Chiang D.-C., Huang H.-Y., Wu C.-Y. 1992; Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xanthomonas campestris pv. campestris . Journal of Bacteriology 174:2679–2687
    [Google Scholar]
  25. Liu Y.-N., Tang J.-L., Clarke B. R., Dow M., Daniels M. J. 1990; A multipurpose broad host range cloning vector and its use to characterise an extracellular protease gene of Xanthomonas campestris pv. campestris . Molecular and General Genetics 220:433–440
    [Google Scholar]
  26. MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. 1980; Structure of a family of rat amylase genes. Nature, London 287:117–122
    [Google Scholar]
  27. Matsuura Y., Kusunoki M., Harada W., Kakudo M. 1984; Structure and possible catalytic residues of Taka-amylase A. Journal of Biochemistry 95:697–702
    [Google Scholar]
  28. Messing J. 1979; A multipurpose cloning system based on the single-stranded DNA bacteriophage M13. In Recombinant DNA Technical Bulletin NIH Publication No. 79–99 vol. 2: no. 2 pp. 43–48
    [Google Scholar]
  29. Miller J. H. 1972 Experiments in Molecular Genetics pp. 431–434 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Nakajima R., Imanaka T., Aiba S. 1985; Nucleotide sequence of the Bacillus stearothermophilus α-amylase gene. Journal of Bacteriology 163:401–406
    [Google Scholar]
  31. Nakajima R., Imanaka T., Aiba S. 1986; Comparison of amino acid sequences of eleven different α-amylases. Applied and Micro-biological Biotechnology 23:355–360
    [Google Scholar]
  32. Nakamura Y., Ogawa M., Nishide T., Emi M., Kosaki G., Himeno S., Matsubara K. 1984; Sequences of cDNAs for human salivary and pancreatic α-amylases. Gene 28:263–270
    [Google Scholar]
  33. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153:375–380
    [Google Scholar]
  34. Neu H. C., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. Journal of Biological Chemistry 240:3685–3692
    [Google Scholar]
  35. Oliver D. 1985; Protein secretion in Escherichia coli . Annual Review of Microbiology 39:615–648
    [Google Scholar]
  36. Pasero L., Mazzei-Pierron Y., Abadie B., Chicheportiche Y., Marchis-Mouren G. 1986; Complete amino acid sequence and location of the five disulfide bridges in porcine pancreatic α-amylase. Biochimica et Biophysica Acta 869:147–157
    [Google Scholar]
  37. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America 85:2444–2448
    [Google Scholar]
  38. Pugsley A. P., Poquet I., Kornacker M. G. 1991; Two distinct steps in pullulanase secretion by Escherichia coli K12. Molecular Microbiology 5:865–873
    [Google Scholar]
  39. Randall L. L., Hardy S. J. S., Thom J. R. 1987; Export of protein: a biochemical view. Annual Review of Microbiology 41:507–541
    [Google Scholar]
  40. Sanger R., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  41. Silhavy T. J., Berman M. L., Enquist L. W. 1984; In vitro packaging of DNA. In Experiments with Gene Fusions pp. 173–176 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Tai P. C., Zyk N., Citri N. 1985; In situ detection of β-lactamase activity in sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry 144:199–203
    [Google Scholar]
  43. Takkinen K., Pettersson R. F., Kalkkinen N., Palva I., Soederlund H., Kaariainen K. 1983; Amino acid sequence of α-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. Journal of Biological Chemistry 258:1007–1013
    [Google Scholar]
  44. Toda H., Kondo K., Narita K. 1982; The complete amino acid sequence of Taka-amylase A. Proceedings of the Japan Academy 58:208–212
    [Google Scholar]
  45. Tseng Y. H., Peng K. C. 1985; Characterization of α-amylase from phytopathogenic Xanthomonas campestris pv. campestris . Proceedings of the National Science Council Republic of China 9:259–268
    [Google Scholar]
  46. Vieira J., Messing J. 1982; The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primer. Gene 19:259–268
    [Google Scholar]
  47. Watson J. D., Hopkins N. H., Roberts J. W., Steitz J. A., Weiner A. M. 1987; Regulation of protein synthesis and function in bacteria. In Molecular Biology of the Gene, 4th edn.465–502 California: The Benjamin/Cummings Publishing Company Inc;
    [Google Scholar]
  48. Yuuki T., Nomura T., Tezuka H., Tsuboi A., Yamagata H., Tsukagoshi N., Udaka S. 1985; Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying α-amylases deduced from the DNA sequences. Journal of Biochemistry 98:1147–1156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-8-1647
Loading
/content/journal/micro/10.1099/00221287-138-8-1647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error