1887

Abstract

The effect of different growth conditions on the glycogen and poly-β-hydroxybutyrate (PHB) content of the cyanobacterium is described. Under photoautotrophic growth conditions without any nutrient limitation, exhibited a glycogen content of between 7.1 and 10.7% of cell dry wt, whereas PHB was undetectable. When was grown under mixotrophic conditions in the presence of acetate, the intracellular PHB concentration increased to more than 3% of dry wt, while glycogen content remained within the range of 5 to 6% of cell dry wt. Nitrogen starvation favoured glycogen accumulation (up to 60 to 70% of dry wt), while the PHB content remained low (up to 0.7% of dry wt), even after prolonged nitrogen starvation. Inhibition of protein synthesis, induced by addition of azaserine, led to the accumulation of glycogen (up to 52% of cell dry wt) but did not stimulate PHB synthesis. Under phosphorus-limited growth conditions, glycogen and PHB accumulated (up to 23% and 1.2% of cell dry wt, respectively) only after the exhaustion of intracellular phosphorus reserves. Shifting the culture from low to high light irradiance induced a rapid accumulation of glycogen (up to 34% of cell dry wt after 9 h) but did not induce PHB synthesis. Results are discussed in terms of the metabolic significance of PHB synthesis in cyanobacteria, and suggest that this polymer acts exclusively as a disposal mechanism to eliminate excess reducing equivalents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-8-1623
1992-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/8/mic-138-8-1623.html?itemId=/content/journal/micro/10.1099/00221287-138-8-1623&mimeType=html&fmt=ahah

References

  1. Allen M. M. 1984; Cyanobacterial cell inclusions. Annual Review of Microbiology 38:1–25
    [Google Scholar]
  2. Allen M. M., Smith A. J. 1969; Nitrogen chlorosis in blue-green algae. Archiv fur Mikrobiologie 69:114–120
    [Google Scholar]
  3. Anderson A. J., Dawes E. A. 1990; Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkan-oates. Microbiological Reviews 54:450–472
    [Google Scholar]
  4. Bennet A., Bogorad L. 1973; Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology 58:419–435
    [Google Scholar]
  5. Bocci F., Torzillo G., Vincenzini M., Materassi R. 1987; Growth physiology of Spirulina platensis in tubular photobioreactor under natural light. In Algal Biotechnology pp. 219–228 Edited by Stadler T., Mollion J., Verdus M. C., Karamanos Y., Morvan H., Christiaen D. London: Elsevier Applied Science;
    [Google Scholar]
  6. Bottomley P. J., Stewart W. D. P. 1976; ATP pools and transients in the blue-green alga, Anabaena cylindrica . Archiv fur Mikrobiologie 108:249–258
    [Google Scholar]
  7. Brandi H., Gross R. A., Lenz R. W., Lloyd R., Fuller R. C. 1991; The accumulation of poly(3-hydroxyalkanoates) in C . Archives of Microbiology 155:337–340
    [Google Scholar]
  8. Byrom D. 1987; Polymer synthesis by microorganisms: technology and economics. Trends in Biotechnology 5:246–250
    [Google Scholar]
  9. Campbell J., Ill, Stevens S. E. Jr, Balkwill D. L. 1982; Accumulation of poly-β-hydroxybutyrate in Spirulina platensis . Journal of Bacteriology 149:361–363
    [Google Scholar]
  10. Capon R. J., Dunlop R., W„ Ghisalberti E. L., Jefferies P. R. 1983; Poly-3-hydroxyalkanoates from marine and freshwater cyanobacteria. Phytochemistry 22:1181–1184
    [Google Scholar]
  11. Carr N. G. 1966; The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii . Biochimica et Biophysica Acta 120:308–310
    [Google Scholar]
  12. Carr N. G. 1988; Nitrogen reserves and dynamic reservoirs in cyanobacteria. In Biochemistry of the Algae and Cyanobacteria pp. 13–21 Edited by Rogers L. J., Gallon J. R. Oxford: Clarendon Press;
    [Google Scholar]
  13. Dawes E. A. 1986; Microbial energy reserve compounds. In Microbial Energetics pp. 145–165 Edited by Dawes E. A. Glasgow: Blackie & Son;
    [Google Scholar]
  14. Dawes E. A., Senior P. J. 1973; The role and regulation of energy reserve polymers in micro-organisms. Advances in Microbial Physiology 10:135–266
    [Google Scholar]
  15. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  16. Ernst A., Bӧger P. 1985; Glycogen accumulation and the induction of nitrogenase activity in the heterocyst-forming cyanobacterium Anabaena variabilis . Journal of General Microbiology 131:3147–3153
    [Google Scholar]
  17. Ernst A., Kirschenlohr H., Diez J., Bӧger P. 1984; Glycogen content and nitrogenase activity in Anabaena variabilis . Archives of Microbiology 140:120–125
    [Google Scholar]
  18. van Eykelenburg C. 1980; Ecophysiological studies on Spirulina platensis. Effect of temperature, light intensity and nitrate concentration on growth and ultrastructure. Antonie van Leeuwenhoek 46:113–127
    [Google Scholar]
  19. Fay P. 1983 The Blue-Greens (Cyanophyta-Cyanobacteria) London: Edward Arnold;
    [Google Scholar]
  20. Ihlenfeldt M. J. A., Gibson J. 1977; Acetate uptake by the unicellular cyanobacteria Synechococcus and Aphanocapsa . Archives of Microbiology 113:231–241
    [Google Scholar]
  21. Jensen T. 1985; Cell inclusions in the cyanobacteria. Archiv fur Hydrobiologie 71:33–73
    [Google Scholar]
  22. Karr D. B., Waters J. K., Emerich D. W. 1983; Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ionexclusion high-pressure liquid chromatography and UV detection. Applied and Environmental Microbiology 46:1339–1344
    [Google Scholar]
  23. Konopka A., Schnur M. 1981; Biochemical composition and photosynthetic carbon metabolism of nutrient limited cultures of Merismopedia tenuissima (Cyanophyceae). Journal of Phycology 17:118–122
    [Google Scholar]
  24. Lehmann M., Wӧber G. 1976; Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans . Archives of Microbiology 111:93–97
    [Google Scholar]
  25. Liebergesell M., Hustede E., Timm A., SteinbÜchel A., Fuller R. C., Lenz R. W., Schlegel H. G. 1991; Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Archives of Microbiology 155:415–421
    [Google Scholar]
  26. Merrick J. M. 1978; Metabolism of reserve materials. In The Photosynthetic Bacteria pp. 199–219 Edited by Clayton R. K., Sistrom W. R. New York: Plenum Press;
    [Google Scholar]
  27. Parson T. R., Strickland J. D. H. 1963; Discussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Researches 21:155–163
    [Google Scholar]
  28. Pearce J., Carr N. G. 1967; The metabolism of acetate by the blue-green algae, Anabaena variabilis and Anacystis nidulans . Journal of General Microbiology 49:301–313
    [Google Scholar]
  29. Post A. F. 1987; Transient state characteristics of changes in light conditions for the cyanobacterium Oscillatoria agardhii. II. Dynamics in cellular contents and growth rates. Archives of Microbiology 149:19–23
    [Google Scholar]
  30. Preiss J., Romeo T. 1989; Physiology, biochemistry and genetics of bacterial glycogen synthesis. Advances in Microbial Physiology 30:183–238
    [Google Scholar]
  31. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111:1–61
    [Google Scholar]
  32. Shively J. M. 1988; Inclusions: granules of polyglucose, polyphosphate, and poly-β-hydroxybutyrate. Methods in Enzymology 167:195–203
    [Google Scholar]
  33. Smith A. J. 1982; Modes of cyanobacterial carbon metabolism. In The Biology of Cyanobacteria pp. 47–85 Edited by Carr N. G., Whitton B. A. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  34. Smith A. J., Hoare D. S. 1977; Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes?. Bacteriological Reviews 41:419–448
    [Google Scholar]
  35. Stevens S. E. Jr, Balkwill D. L., Paone D. A. M. 1981; The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum . Archives of Microbiology 130:204–212
    [Google Scholar]
  36. Vincenzini M., Sili C., Tredici M. R., Materassi R. 1989; Light dependent nitrogen chlorosis in a heterocystous cyanobacterium. In Nitrogen Fixation with Non-legumes pp. 71–76 Edited by Skinner F. A., Boddey R. M., Fendrik I. Dordrecht: Kluwer Academic;
    [Google Scholar]
  37. Vincenzini M., Sili C., De Philippis R., Ena A., Materassi R. 1990; Occurrence of poly-β-hydroxybutyrate in Spirulina species. Journal of Bacteriology 172:2791–2792
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-8-1623
Loading
/content/journal/micro/10.1099/00221287-138-8-1623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error