1887

Abstract

Exogenous Ca, at concentrations up to 5 m, induced partial germ tube formation in (=) in media normally supporting growth in the yeast-like phase. The calmodulin inhibitors calmidazolium (R24571) and trifluoperazine (TFP), and the Caionophore, A23187, suppressed germ tube formation in germ-tube-inducing medium without affecting yeast-like growth. R24571 was the most effective inhibitor, giving almost complete suppression at 3 μ. Addition of excess Ca (up to 5 m) did not reverse the inhibitory action of R24571 and only ∼ 10% of yeast-like cells formed germ tubes on addition of Ca in the presence of 20 μ-TFP or 15 μ-A23187. Intracellular cAMP increased on incubation with R24571 and A23187, possibly as a result of inhibition of the cAMP phosphodiesterase. The exogenous supply of the calcium-binding agents methylhydroxybenzoate (MHB) and EGTA also suppressed germ tube formation under inducing conditions. These results confirm an involvement of Ca in the yeast−mycelium transition of . Yeast-like cells and germ tubes of exhibited metabolism-dependent Ca uptake which was reduced in the absence of glucose, or by the presence of KCN, the ATPase inhibitors ′-dicyclohexylcarbodiimide (DCCD) and diethylstilboestrol (DES), and the protonophoric uncoupler DNP, indicating dependence on the electrochemical proton gradient across the plasma membrane generated by the H-ATPase. Germ tubes exhibited greater sensitivity to inhibitors of Ca uptake than yeast-like cells, while Ca uptake was competitively inhibited by Mg, Mn and Zn. R24571 and A23187 inhibited Ca uptake by germ tubes although TFP stimulated uptake in comparison to control cells. Ca uptake by both cell types conformed to Michaelis−Menten kinetics at concentrations below ∼ 200 μ but deviated strongly above this concentration. Kinetic analysis of Ca uptake by yeast-like cells and germ tubes, at Ca concentrations below 100 μ, revealed that both cell types possessed Ca transport systems of similar specificity, with values ranging between ∼ 15 and 25 μ, although germ tubes always exhibited greater Ca uptake than yeast cells under similar experimental conditions, possibly a consequence of increased vacuolar compartmentation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-8-1561
1992-08-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/8/mic-138-8-1561.html?itemId=/content/journal/micro/10.1099/00221287-138-8-1561&mimeType=html&fmt=ahah

References

  1. Alsina A., Rodriguez-Del Valle N. 1984; Effects of divalent cations and functionally related substances on the yeast to mycelium transition in Sporothrix schenkii . Sabouraudia 22:1–5
    [Google Scholar]
  2. Armstrong W. McD., Rothstein A. 1967; Discrimination between alkali metal cations by yeast. II. Cation interactions in transport. Journal of General Physiology 50:967–988
    [Google Scholar]
  3. Berridge M. J., Irvine R. F. 1984; Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, London 312:315–321
    [Google Scholar]
  4. Borbolla M., Pena A. 1980; Some characteristics of Ca2+ uptake by yeast cells. Journal of Membrane Biology 54:149–156
    [Google Scholar]
  5. Borbolla M., Pena A., Pardo J. P. 1985; Characteristics of Ca2+ transport in yeast. In Environmental Regulation of Microbial Metabolism pp. 359–367 Edited by Kulaev I. S., Davies E., Tempest D. W. New York: Academic Press;
    [Google Scholar]
  6. Borst-Pauwels G. W. F. H. 1981; Ion transport in yeast. Biochimica et Biophysica Acta 650:88–127
    [Google Scholar]
  7. Borst-Pauwels G. W. F. H., Theuvenet A. P. R. 1985; All-or-none K+ efflux from yeast cells induced by calmodulin antagonists. FEMS Microbiology Letters 29:221–224
    [Google Scholar]
  8. Borst-Pauwels G. W. F. H., Theuvenet A. P. R., Boxman A. W., Peters P. H. J., Dobbelmann J. 1986a; Interaction of calmodulin antagonists with yeast. Comparison with the effect of miconazole, D10-9 and ethidium bromide on Sr2+ uptake, K+ efflux and plasma membrane ATPase activity. Bioelectrochemistry and Bioenergetics 16:519–530
    [Google Scholar]
  9. Borst-Pauwels G. W. F. H., Boxman A. W., Theuvenet A. P. R., Peters P. H. J., Dobbelmann J. 1986b; A study of the mechanism by which inhibitors of the plasma membrane ATPase enhance uptake of divalent cations in yeast. Biochimica et Biophysica Acta 861:413–419
    [Google Scholar]
  10. Boutry M., Foury F., Goffeau A. 1977; Energy-dependent uptake of calcium by the yeast Schizosaccharomyces pombe . Biochimica et Biophysica Acta 464:603–612
    [Google Scholar]
  11. Brunton A. H., Gadd G. M. 1989; The effect of exogenously-supplied nucleosides and nucleotides and the involvement of adenosine 3′:5′-cyclic monophosphate (cyclic AMP) in the yeast-mycelium transition of Ceratocystis (= Ophiostoma) ulmi . FEMS Microbiology Letters 60:49–54
    [Google Scholar]
  12. Brunton A. H., Gadd G. M. 1991; Evidence for an inositol lipid signal pathway in the yeast-mycelium transition of Ophiostoma ulmi, the Dutch elm disease fungus. Mycological Research 95:484–491
    [Google Scholar]
  13. Cheung W. Y., Bradham L. S., Lynch T. J., Lin Y. M., Tallant E. A. 1985; Protein activator of cyclic 3′, 5′-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochemical and Biophysical Research Communications 66:1055–1062
    [Google Scholar]
  14. Cornelius G., Nakashima H. 1987; Vacuoles play a decisive role in calcium homeostasis in Neurospora crassa . Journal of General Microbiology 133:2341–2347
    [Google Scholar]
  15. Cox J. A., Ferrax C., Démaillé J. G., Perez R. O., Van Tuinen D., Marme D. 1982; Calmodulin from Neurospora crassa: general properties and conformational changes. Journal of Biological Chemistry 257:10694–10700
    [Google Scholar]
  16. Edwards S. W., Humphreys J. M., Taylor C. D., Soulioti A. M. A., Brunton A. H., Gadd G. M., Hart C. A. 1989; Inhibition of neutrophil superoxide secretion by the preservative, methylhydroxybenzoate. Effects mediated by perturbation of intracellular Ca2+ . Free Radical Research Communications 10:333–343
    [Google Scholar]
  17. Eilam Y. 1982; The effect of potassium ionophores and potassium on cellular calcium in the yeast Saccharomyces cerevisiae . Journal of General Microbiology 128:2611–2614
    [Google Scholar]
  18. Eilam Y., Chernichovsky D. 1988; Low concentrations of trifluoperazine arrest the cell division cycle of Saccharomyces cerevisiae at two specific stages. Journal of General Microbiology 134:1063–1069
    [Google Scholar]
  19. Eilam Y., Othman M. 1990; Activation of Ca2+ influx by metabolic substrates in Saccharomyces cerevisiae: role of membrane potential and cellular ATP levels. Journal of General Microbiology 136:861–866
    [Google Scholar]
  20. Eilam Y., Lavi H., Grossowicz N. 1985; Cytoplasmic Ca2+ homeostasis maintained by a vacuolar Ca2+ transport system in the yeast Saccharomyces cerevisiae . Journal of General Microbiology 131:623–629
    [Google Scholar]
  21. Gomes S. L., Mennucci L., Maia J. C. C. 1979; A calcium dependent protein activator of mammalian cyclic nucleotide phosphodiesterase from Blastocladiella emersonii . FEBS Letters 99:39–12
    [Google Scholar]
  22. Gow N. A. R., Gooday G. W. 1984; A model for the germ tube formation and mycelial growth form of Candida albicans . Sabour-audia 22:137–143
    [Google Scholar]
  23. Grand R. J. A., Nairn A. C., Perry S. V. 1980; The preparation of calmodulins from barley (Hordeum sp.) and basidiomycete fungi. Biochemical Journal 185:755–760
    [Google Scholar]
  24. Hubbard M. J., Bradley M., Sullivan P. A., Shepherd M. G., Forrester I. 1982; Evidence for the occurrence of calmodulin in the yeasts Candida albicans and Saccharomyces cerevisiae . FEBS Letters 317:85–88
    [Google Scholar]
  25. Iida H., Yagawa Y., Anraku Y. 1990; Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. Journal of Biological Chemistry 265:13391–13399
    [Google Scholar]
  26. Jackson S. L., Heath I. B. 1989; Effects of exogenous calcium ions on tip growth, intracellular calcium concentration, and actin arrays in hyphae of the fungus Saprolegnia ferax . Experimental Mycology 13:1–12
    [Google Scholar]
  27. Laccetti L., Staples R. C., Hoch H. C. 1987; Purification of calmodulin from bean root uredospores. Experimental Mycology 11:231–235
    [Google Scholar]
  28. Magalhães B. P., Wayne R., Humber R. A., Shields E. J., Roberts D. W. 1991; Calcium-regulated appressorium formation of the entomopathogenic fungus Zoophthora radicans . Protoplasma 160:77–88
    [Google Scholar]
  29. Miller A. J., Vogg G., Sanders D. 1990; Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proceedings of the National Academy of Sciences of the United States of America 87:9348–9352
    [Google Scholar]
  30. Miyakawa T., Tachikawa T., Jeong Y. Κ., Tsuchiya E., Fukui S. 1985; Transient increase of Ca2+ uptake as a signal for mating-pheremone-induced differentiation in the heterobasidiomycetous yeast Rhodosporidium toruloides . Journal of Bacteriology 162:1304–1306
    [Google Scholar]
  31. Miyakawa T., Oka Y., Tsuchiya E., Fukui S. 1989; Saccharomyces cerevisiae protein kinase dependent on Ca2+ and calmodulin. Journal of Bacteriology 171:1417–1422
    [Google Scholar]
  32. Morris J. G. 1974 A Biologist’s Physical Chemistry London: Edward Arnold;
    [Google Scholar]
  33. Muthukumar G., Nickerson K. W. 1984; Ca(II)–calmodulin regulation of fungal dimorphism in Ceratocystis ulmi . Journal of Bacteriology 159:390–392
    [Google Scholar]
  34. Muthukumar G., Nickerson K. W. 1985; Ca(II)–calmodulin regulation of morphological commitment in Ceratocystis ulmi . FEMS Microbiology Letters 27:199–202
    [Google Scholar]
  35. Muthukumar G., Kulkarni R. K., Nickerson K. W. 1985; Calmodulin levels in the yeast and mycelial phases of Ceratocystis ulmi . Journal of Bacteriology 162:47–49
    [Google Scholar]
  36. Muthukumar G., Luby M. Y., Nickerson K. W. 1986; Calmodulin activity in yeast and mycelial phases of Ceratocystis ulmi . FEMS Microbiology Letters 37:313–316
    [Google Scholar]
  37. Muthukumar G., Nickerson A. W., Nickerson K. W. 1987; Calmodulin levels in yeasts and filamentous fungi. FEMS Microbiology Letters 41:253–255
    [Google Scholar]
  38. Nieuwenhuis B. J. W. M., Weijers C. A. G. M., Borst-Pauwels G. W. F. H. 1981; Uptake and accumulation of Mn2+ and Sr2+ in Saccharomyces cerevisiae . Biochimica et Biophysica Acta 649:83–88
    [Google Scholar]
  39. Ohsumi Y., Anraku Y. 1983; Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae . Journal of Biological Chemistry 258:5614–5617
    [Google Scholar]
  40. Okorokov L. A., Kilakovskaya T. V., Lichko L. P., Polorotova E. V. 1985; H+/ion antiport as the principal mechanism of transport systems in the vacuolar membrane of Saccharomyces carlsbergensis . FEBS Letters 192:303–306
    [Google Scholar]
  41. Paranjape V., Roy B. G., Datta A. 1990; Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans . Journal of General Microbiology 136:2149–2154
    [Google Scholar]
  42. Pine L., Peacock C. L. 1958; Studies on the growth of Histoplasma capsulatum. IV. Factors influencing conversion of the mycelial phase to the yeast phase. Journal of Bacteriology 75:167–174
    [Google Scholar]
  43. Pitt D., Kaile A. 1990; Transduction of the calcium signal with special reference to Ca2+-induced conidiation in Penicillium notatum . In Biochemistry of Cell Walls and Membranes in Fungi pp. 283–298 Edited by Kuhn P. J., Trinci A. P. J., Jung M. J., Goosey M. W., Copping L. G. Berlin: Springer-Verlag;
    [Google Scholar]
  44. Pitt D., Ugalde U. O. 1984; Calcium in fungi. Plant, Cell and Environment 7:467–475
    [Google Scholar]
  45. Pitt D., Barnes J. C., Ugalde U. O. 1988; Differential uptake of calcium by strains of Pénicillium notatum and relationships to calcium-induced conidiation. Transactions of British Mycological Society 91:489–499
    [Google Scholar]
  46. Prozialeck W. C., Weiss G. Β. 1985; Mechanisms of pharmacologically altering calmodulin activity. In Calcium in Biological Systems pp. 255–264 Edited by Rubin R. P., Weiss G. B., Putney J. W. New York: Plenum Press;
    [Google Scholar]
  47. Robson G. D., Wiebe M. G., Trinci A. P. J. 1991a; Low calcium concentrations induce increased branching in Fusarium graminearum . Mycological Research 95:561–565
    [Google Scholar]
  48. Robson G. D., Trinci A. P. J., Wiebe M. G., Best L. C. 1991b; Phosphatidylinositol 4, 5-bisphosphate (PIP2) is present in Fusarium graminearum . Mycological Research 95:1082–1084
    [Google Scholar]
  49. Robson G. D., Wiebe M. G., Trinci A. P. J. 1991c; Involvement of Ca2+ in the regulation of hyphal extension and branching in Fusarium graminearum A3/5. Experimental Mycology 15:263–272
    [Google Scholar]
  50. Roy Β. G., Datta A. 1987; A calmodulin inhibitor blocks morphogenesis in Candida albicans . FEMS Microbiological Letters 41:327–329
    [Google Scholar]
  51. Saavedra-Molina A., Villalobos R., Borbolla M. 1983; Calcium uptake during the cell cycle of Saccharomyces cerevisiae . FEBS Letters 160:195–197
    [Google Scholar]
  52. Sabie F. T., Gadd G. M. 1989; Involvement of a Ca2+–calmodulin interaction in the yeast–mycelial (Y–M) transition of Candida albicans . Mycopathologia 108:47–54
    [Google Scholar]
  53. Sabie F. T., Gadd G. M. 1990; The effect of zinc on the yeast–mycelium transition of Candida albicans and examination of zinc uptake at different stages of growth. Mycological Research 94:952–958
    [Google Scholar]
  54. Salgado-Rodriguez L. M., Martinez-Cadena, Gutierrez-Corona J. F. 1986; Calmodulin-like activity in Mucor rouxii . FEMS Microbiology Letters 35:89–92
    [Google Scholar]
  55. Schmid J., Harold F. Μ. 1988; Dual roles for calcium ions in apical growth of Neurospora crassa . Journal of General Microbiology 134:2623–2631
    [Google Scholar]
  56. Serrano R. 1980; Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast. European Journal of Biochemistry 105:419–424
    [Google Scholar]
  57. Slayman C. L., Kaminski P., Stetson D. 1990; Structure and function of fungal plasma membrane ATPases. In Biochemistry of Cell Walls and Membranes in Fungi pp. 2999–316 Edited by Kuhn P. J., Trinci A. P. J., Jung M. J., Goosey M. W., Copping L. G. Berlin: Springer-Verlag;
    [Google Scholar]
  58. Soll D. R., Bedell G. W., Brummer M. 1981; Zinc and the regulation of growth and phenotype in the infectious yeast Candida albicans . Infection and Immunity 32:1139–1147
    [Google Scholar]
  59. St Leger R. J., Roberts D. W., Staples R. C. 1989; Calcium and calmodulin-mediated protein synthesis and protein phosphorylation during germination, growth and protein production by Metarhizium anisopliae . Journal of General Microbiology 135:2141–2154
    [Google Scholar]
  60. St Leger R. J., Butt T. M., Staples R. C., Roberts D. W. 1990; Second messenger involvement in differentiation of the entomo-pathogenic fungus Metarhizium anisopliae . Journal of General Microbiology 136:1779–1789
    [Google Scholar]
  61. Tachikawa T., Miyaka T., Tsuchiya E., Fukui S. 1987; A rapid and transient increase of cellular Ca2+ in response to mating pheromone in Saccharomyces cerevisiae . Agricultural and Biological Chemistry 51:1209–1210
    [Google Scholar]
  62. Trinci A. P. J., Robson G. D., Wiebe M. G., Cunliffe Β., Naylor T. W. 1990; Growth and morphology of Fusarium graminearum and other fungi in batch and continuous culture. In Microbial Growth Dynamics pp. 17–38 Edited by Poole R. K., Bazin M. J., Keevil C. W. Oxford: IRL Press;
    [Google Scholar]
  63. Ugalde U. O., Pitt D. 1986; Calcium uptake kinetics in relation to conidiation in submerged cultures of Penicillium cyclopium . Transactions of the British Mycologucal Society 87:199–203
    [Google Scholar]
  64. Walker G. M., Sullivan P. A., Shepherd M. G. 1984; Magnesium and the regulation of germ-tube formation in Candida albicans . Journal of General Microbiology 130:1941–1945
    [Google Scholar]
  65. White C., Gadd G. M. 1987; The uptake and cellular distribution of zinc in Saccharomyces cerevisiae . Journal of General Microbiology 133:727–737
    [Google Scholar]
  66. Wright M. S., Cook B. J., Holman G. M. 1986; Regulation of adenylate cyclase from Leucophaea maderae by calcium, calmodulin and forskolin. Comparative Biochemistry and Physiology 85:357–362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-8-1561
Loading
/content/journal/micro/10.1099/00221287-138-8-1561
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error