1887
Preview this article:
Zoom in
Zoomout

genes and the applications of bacterial bioluminescence, Page 1 of 1

| /docserver/preview/fulltext/micro/138/7/mic-138-7-1289-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-7-1289
1992-07-01
2021-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/7/mic-138-7-1289.html?itemId=/content/journal/micro/10.1099/00221287-138-7-1289&mimeType=html&fmt=ahah

References

  1. Ahmad K. A., Stewart G. S. A. B. 1991; The production of bioluminescent lactic acid bacteria suitable for the rapid assessment of starter culture activity in milk. Journal of Applied Bacteriology 70 113 120
    [Google Scholar]
  2. Alam J., Cook J. L. 1990; Reporter genes: application to the study of mammalian gene expression. Analytical Biochemistry 188 245 254
    [Google Scholar]
  3. Almashanu S., Musafia B., Hadar R., Suissa M., Kuhn J. 1990; Fusion of luxA and luxB and its expression in E. coli, S. cerevisiae and D. melanogaster. Journal of Bioluminescence and Chemiluminescence 5 89 97
    [Google Scholar]
  4. Bainton N. J., Bycroft B. W., Chhabra S. R., Stead P., Gledhill L., Hill P. J., Rees C. E. D., Winson M. K., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992a; A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic synthesis in Erwinia. Gene (in the Press)
    [Google Scholar]
  5. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992b; N-(3 Oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochemical Journal (in the Press)
    [Google Scholar]
  6. Baldwin T. O., Devine J. H., Heckel R. C., Lin J. W., Shadel G. S. 1989; The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence. Journal of Bioluminescence and Chemiluminescence 4 326 341
    [Google Scholar]
  7. Blissett S. J., Stewart G. S. A. B. 1989; In vivo bioluminescence determination of apparent Km’s for aldehyde in recombinant bacteria expressing luxAB. Letters in Applied Microbiology 9 149 152
    [Google Scholar]
  8. Boivin R., Chalifour F. P., Dion P. 1988; Construction of a Tn5 derivative encoding bioluminescence and its introduction in Pseudomonas, Agrobacterium and Rhizobium. Molecular and General Genetics 213 50 55
    [Google Scholar]
  9. Boylan M. O., Pelletier J., Dhepagnon S., Trudel S., Sonenberg N., Meighen E. A. 1989; Construction of a fused luxAB gene by site directed mutagenesis. Journal of Bioluminescence and Chemiluminescence 4 310 316
    [Google Scholar]
  10. Brown N. L., Lund P. A., Nibriain N. 1989; Mercury resistance in bacteria. In Genetics of Bacterial Diversity pp. 175 195 Edited by Hopwood D. A., Chater K. F. London: Academic Press;
    [Google Scholar]
  11. Burlage R. S., Sayler G. S., Larimer F. 1990; Monitoring of naphthalene catabolism by bioluminescence with nah–lux transcriptional fusions. Journal of Bacteriology 172 4749 4757
    [Google Scholar]
  12. Carmi O. A., Stewart G. S. A. B., Ulitzur S., Kuhn J. 1987; Use of bacterial luciferase to establish a promoter probe vehicle capable of nondestructive real-time analysis of gene expression in Bacillus spp. Journal of Bacteriology 169 2165 2170
    [Google Scholar]
  13. Cohn D. H., Ogden R. C., Abelson J. N., Baldwin T. O., Nealson K. H., Simon M. I., Mileham A. J. 1983; Cloning of the Vibrio harveyi luciferase genes: use of a synthetic oligonucleotide probe. Proceedings of the National Academy of Sciences of the United States of America 80 120 123
    [Google Scholar]
  14. Cohn D. H., Mileham A. J., Simon M. I., Nealson K. H., Raush S. K., Bonam D., Baldwin T. O. 1985; Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. Journal of Biological Chemistry 260 6139 6146
    [Google Scholar]
  15. De Lorenzo V., Herrero M., Jakubzik U., Timms K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. Journal of Bacteriology 172 6568 6572
    [Google Scholar]
  16. Denyer S. P., Jassim S. A. A., Stewart G. S. A. B. 1992; Engineering microbial bioluminescence and biosensor applications. In Molecular Biology in Clinical Research and Diagnosis Edited by Walker M. R. Oxford: Blackwell Scientific Publications; (in the Press)
    [Google Scholar]
  17. Deretic V., Konyecsni W. M., Mohr C. D., Martin D. W., Hibler N. S. 1989; Common denominators of promoter control in Pseudomonas and other bacteria. Biotechnology 7 1279 1284
    [Google Scholar]
  18. Devine J. H., Countryman C., Baldwin T. O. 1988; Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC-7744. Biochemistry 27 837 842
    [Google Scholar]
  19. Devine J. H., Shadel G. S., Baldwin T. O. 1989; Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC-7744. Proceedings of the National Academy of Sciences of the United States of America 86 5688 5692
    [Google Scholar]
  20. Dodd C. E. R., Stewart G. S. A. B., Waites W. M. 1990; Biotechnology-based methods for the detection, enumeration and epidemiology of food poisoning and spoilage organisms. Biotechnology and Genetic Engineering Reviews 8 1 51
    [Google Scholar]
  21. Eberhard A., Burlingame A. L., Eberhard C., Kenyon G. L., Nealson K. H., Oppenheimer N. J. 1981; Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20 2444 2449
    [Google Scholar]
  22. Engebrecht J., Silverman M. 1984; Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences of the United States of America 81 4154 4158
    [Google Scholar]
  23. Engebrecht J., Nealson K. H., Silverman M. 1983; Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32 773 781
    [Google Scholar]
  24. Engebrecht J., Simon M., Silverman M. 1985; Measuring gene expression with light. Science 227 1345 1347
    [Google Scholar]
  25. Escher A., O’Kane D. J., Lee J., Szalay A. A. 1989; Bacterial luciferase αβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proceedings of the National Academy of Sciences of the United States of America 86 6528 6532
    [Google Scholar]
  26. Fang F. C., Krause M., Roudier C., Fierer J., Guiney D. G. 1991; Growth regulation of a Salmonella plasmid gene essential for virulence. Journal of Bacteriology 173 6783 6789
    [Google Scholar]
  27. Farinha M. A., Kropinski A. M. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. Journal of Bacteriology 172 3496 3499
    [Google Scholar]
  28. Foran D. R., Brown W. M. 1988; Nucleotide sequence of the luxA and luxB genes of the bioluminescent marine bacterium Vibrio fischeri. Nucleic Acids Research 16 777
    [Google Scholar]
  29. Friedland J., Hastings J. W. 1967; The reversibility of the denaturation of bacterial luciferase. Biochemistry 6 2893 2900
    [Google Scholar]
  30. Gould S. J., Subramani S. 1988; Firefly luciferase as a tool in molecular and cell biology. Analytical Biochemistry 175 5 13
    [Google Scholar]
  31. Guijarro J., Santamaria R., Schauer A., Losick R. 1988; Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. Journal of Bacteriology 170 1895 1901
    [Google Scholar]
  32. Gupta S. C., O’Brien D., Hastings J. W. 1985; Expression of the cloned subunits of bacterial luciferase from separate replicons. Biochemical and Biophysical Research Communications 127 1007 1011
    [Google Scholar]
  33. Hall L. R., Harding S. E., Waites W. M. 1990; Use of bioluminescence to study heat resistance of spores of Bacillus megaterium KM. Journal of Applied Bacteriology 69 xxiv
    [Google Scholar]
  34. Henikoff S., Wallace J. C., Brown J. P. 1990; Finding protein similarities with nucleotide sequence databases. Methods in Enzymology 183 111 132
    [Google Scholar]
  35. Hill P. J., Swift S., Stewart G. S. A. B. 1991; PCR based gene engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products. Molecular and General Genetics 226 41 48
    [Google Scholar]
  36. Horinouchi S., Beppu T. 1992; Regulation of secondary metabolism and cell differentiation in Streptomyces: A-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene 115 (in the Press)
    [Google Scholar]
  37. Illarionov B. A., Blinov V., Donchenko A. P., Protopopova M. V., Karginov V. A., Mertvetson N. P., Gitelson J. I. 1990; Isolation of bioluminescent functions from Photobacterium leiognathi: analysis of luxA, luxB, luxG and neighbouring genes. Gene 86 89 94
    [Google Scholar]
  38. Inouye S., Nakazawa A., Nakazawa T. 1984; Nucleotide sequence of the promoter region of the xyl DEGF operon on TOL plasmids of Pseudomonas putida. Gene 29 323 330
    [Google Scholar]
  39. Jacobs M., Hill P. J., Stewart G. S. A. B. 1991; Highly bioluminescent Bacillus subtilis obtained through high-level expression of a luxAB fusion gene. Molecular and General Genetics 230 251 256
    [Google Scholar]
  40. Jago P. H., Simpson W. J., Denyer S. P., Evans A. W., Griffiths M. W., Hammond J. R. M., Ingram T. P., Lacey R. F., Macey N. W., McCarthy B. J., Salusbury T. T., Senior P. S., Sizorowicz F. S., Smither R., Stanfield G., Stanley P. E. 1989; An evaluation of the performance of ten commercial luminometers. Journal of Bioluminescence and Chemiluminescence 3 131 145
    [Google Scholar]
  41. Johnston T. C., Thompson R. B., Baldwin T. O. 1986; Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the β-subunit of bacterial luciferase. Journal of Biological Chemistry 261 4805 4811
    [Google Scholar]
  42. Johnston T. C., Rucker E. B., Cochrum L., Hruska K. S., Vandegrift V. 1990; The nucleotide sequence of the luxA and luxB genes of Xenorhabdus luminescens HM and a comparison of the amino acid sequences of luciferases from four species of bioluminescent bacteria. Biochemical and Biophysical Research Communications 170 407 415
    [Google Scholar]
  43. Kinsman O. S. 1986; Models for staphylococcal colonisation and skin infections. Experimental Models in Antimicrobial Chemotherapy 2 135 146
    [Google Scholar]
  44. Kirchner G., Roberts J. L., Gustafson G. D., Ingolia T. D. 1989; Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells. Gene 81 349 354
    [Google Scholar]
  45. Kodikara C. P., Crew H. H., Stewart G. S. A. B. 1991; Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiology Letters 83 261 266
    [Google Scholar]
  46. Kricka L. J. 1988; Clinical and biochemical applications of luciferases and luciferins. Analytical Biochemistry 175 14 21
    [Google Scholar]
  47. Lee C. Y., Schmidt J. J., Johnson-Winegar A. D., Spero L., Iandolo J. J. 1987; Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. Journal of Bacteriology 169 3904 3909
    [Google Scholar]
  48. Masuko M., Hosoi S., Hayakawa T. 1991; A novel method for detection and counting of single bacteria in a wide field using an ultra-high-sensitivity TV camera without a microscope. FEMS Microbiology Letters 81 287 290
    [Google Scholar]
  49. McCarter L., Silverman M. 1989; Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. Journal of Bacteriology 170 731 736
    [Google Scholar]
  50. Meighen E. 1984; Bacterial bioluminescence: an experimental system for studying enzyme and gene regulation. Bulletin of the Canadian Biochemical Society 21 29 34
    [Google Scholar]
  51. Meighen E. A. 1988; Enzymes and genes from the lux operons of bioluminescent bacteria. Annual Reviews of Microbiology 42 151 176
    [Google Scholar]
  52. Meighen E. A. 1991; Molecular biology of bacterial bioluminescence. Microbiological Reviews 55 123 142
    [Google Scholar]
  53. Mengaud J., Dramsi S., Gouin E., Vazquez-Boland J. A., Milon G., Gossart P. 1991; Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Molecular Microbiology 5 2273 2283
    [Google Scholar]
  54. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101 20 78
    [Google Scholar]
  55. Miller J. F., Mekalanos J. J., Falkow S. 1989; Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243 916 922
    [Google Scholar]
  56. Mitchell P. 1991; Detecting the single cell. Laboratory Equipment Digest March 1991
    [Google Scholar]
  57. Moelders H. H. 1990; Mercury determination by bioluminescence of transformed microorganisms. World Patent Index accession number 90–239981/32. Patent CC number DE 3902982. ICM C12Q001–02
    [Google Scholar]
  58. Mulvey M. R., Switala J., Borys A., Loewen P. C. 1990; Regulation of transcription of katE and katF in Escherichia coli. Journal of Bacteriology 172 6713 6720
    [Google Scholar]
  59. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26 101 106
    [Google Scholar]
  60. O’Kane D. J., Lingle W. L., Wampler J. E., Legocki M., Legocki R. P., Szalay A. A. 1988; Visualization of bioluminescence as a marker of gene expression in rhizobium-infected soybean root nodules. Plant Molecular Biology 10 387 399
    [Google Scholar]
  61. O’Toole P. W., Foster T. J. 1987; Nucleotide sequence of the epidermolytic toxin A gene of Staphylococcus aureus. Journal of Bacteriology 169 3910 3915
    [Google Scholar]
  62. Park S. F. 1990 The biochemistry and genetics of osmoregulation in Escherichia coli PhD thesis University of Nottingham; U.K:
    [Google Scholar]
  63. Park S. F., Stirling D. A., Hulton C. S. J., Booth I. R., Higgins C. F., Stewart G. S. A. B. 1989; A novel, non-invasive promoter probe vector: cloning the osmoregulated proU promoter of Escherichia coli K-12. Molecular Microbiology 3 1011 1023
    [Google Scholar]
  64. Park S. F., Nissen U., Stewart G. S. A. B. 1991; The cloning and expression of luxAB in Listeria monocytogenes. In Bioluminescence & Chemiluminescence Current Status pp. 35 38 Edited by Stanley P. E., Kricka L. J. Chichester: John Wiley;
    [Google Scholar]
  65. Peabody D. S., Andrews C. L., Escudero K. W., Devine J. H., Baldwin T. O., Bear D. G. 1989; A plasmid vector and quantitative techniques for the study of transcription termination in Escherichia coli using bacterial luciferase. Gene 75 289 296
    [Google Scholar]
  66. Perkins J. B., Youngman P. 1986; Construction and properties of Tn917–lac, a transposon derivative that mediates transcriptional gene fusions in B. subtilis. Proceedings of the National Academy of Sciences of the United States of America 83 140 144
    [Google Scholar]
  67. Reid C. L. 1992 Use of bioluminescent bacteria to determine the inhibitory products of lactobacilli PhD thesis University of Nottingham; UK:
    [Google Scholar]
  68. Rogowsky D. M., Close T. J., Chimera J. A., Shaw J. J., Kado C. I. 1987; Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. Journal of Bacteriology 169 5101 5112
    [Google Scholar]
  69. Ronson C. W., Nixon B. T., Ausubel F. M. 1987; Conserved domains in bacterial regulator proteins that respond to environmental stimuli. Cell 49 579 581
    [Google Scholar]
  70. Sakurai S., Suzuki H., Kondo I. 1988; DNA sequencing of the eta gene coding for staphylococcal exfoliative toxin serotype A. Journal of General Microbiology 134 711 717
    [Google Scholar]
  71. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn C. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 487 491
    [Google Scholar]
  72. Sakharov G. N., Ismailov A. D., Danilov V. S. 1988; Temperature dependences of the reaction of bacterial luciferase from Beneckea harveyi and Photobacterium fischeri. Biochemistry (USSR) 53 770 776
    [Google Scholar]
  73. Schauer A., Ranes M., Santamaria R., Guijarro J., Lawlor E., Mendez C., Chater K., Losick R. 1988; Visualizing gene expression in time and space in the filamentous bacterium. Streptomyces coelicolor. Science 240 768 772
    [Google Scholar]
  74. Sevigny P., Gossard F. 1990; Genes luxA and luxB as markers. Gene 93 143 146
    [Google Scholar]
  75. Shadel G. S., Young R., Baldwin T. O. 1990; Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the luxR protein from Vibrio fischeri ATCC 7744. Journal of Bacteriology 172 3980 3987
    [Google Scholar]
  76. Shadel G., Baldwin T. O. 1991; The Vibrio fischeri Lux-R protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. Journal of Bacteriology 173 568 574
    [Google Scholar]
  77. Shaw J. J., Kado C. I. 1986; Development of a Vibrio bioluminescence gene-set to monitor phytopathogenic bacteria during the ongoing disease process in a non-disruptive manner. Bio/Technology 4 560 564
    [Google Scholar]
  78. Sheehan B. J., Foster T. J., Dorman C. J., Park S. F., Stewart G. S. A. B. 1992; Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Molecular and General Genetics (in the Press)
    [Google Scholar]
  79. Shultz D. W., Yarus M. 1990; A simple sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression. Journal of Bacteriology 172 595 602
    [Google Scholar]
  80. Silverman M., Martin M., Engebrecht J. 1989; Regulation of luminescence in marine bacteria. In Genetics of Bacterial Diversity pp. 71 86 Edited by Hopwood D. A., Chater K. F. London: Academic Press;
    [Google Scholar]
  81. Slock J., Vanreit D., Kolibachuk D., Greenberg E. P. 1990; Critical regions of the Vibrio fischeri LuxR protein defined by mutational analysis. Journal of Bacteriology 172 3980 3987
    [Google Scholar]
  82. Sohaskey C. D., Im H., Schauer A. T. 1992; Construction and application of plasmid and transposon based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter cassette. Journal of Bacteriology 174 367 376
    [Google Scholar]
  83. Stewart G. S. A. B. 1990; In vivo bioluminescence: new potentials for microbiology. Letters in Applied Microbiology 10 1 8
    [Google Scholar]
  84. Stewart G. S. A. B., Smith A. T., Denyer S. P. 1989; Genetic engineering of bioluminescent bacteria. Food Science and Technology Today 3 19 22
    [Google Scholar]
  85. Stewart G. S. A. B., Denyer S. P., Lewington J. 1991; Microbiology illuminated: gene engineering and bioluminescence. Trends in Food Science and Technology 2 7 10
    [Google Scholar]
  86. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiological Reviews 53 450 490
    [Google Scholar]
  87. Stock J. B., Stock A. M., Mottonen J. 1990; Signal transduction in bacteria. Nature, London 344 395 400
    [Google Scholar]
  88. Szittner R., Meighen E. 1990; Nucleotide sequence, expression and properties of luciferase coded by lux genes from a terrestrial bacterium. Journal of Biological Chemistry 265 16581 16587
    [Google Scholar]
  89. Tatsumi H., Masuda T., Nakano E. 1988; Synthesis of enzymatically active firefly luciferase in yeast. Agricultural Biology and Chemistry 52 1123 1128
    [Google Scholar]
  90. Ulitzur S., Kuhn J. 1987; Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. In Bioluminescence and Chemiluminescence New Perspectives pp. 463 472 Edited by Schlomerich J., Andreesen R., Kapp A., Ernst M., Woods W. G. Bristol: Wiley;
    [Google Scholar]
  91. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19 259 268
    [Google Scholar]
  92. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. 1984; New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32 369 379
    [Google Scholar]
  93. Wolk C. P., Cai Y., Panoff J. M. 1991; Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America 88 5355 5359
    [Google Scholar]
  94. Wood K. V., Lam Y. A., McElroy W. D. 1989; Introduction to beetle luciferases and their applications. Journal of Bioluminescence and Chemiluminescence 4 289 301
    [Google Scholar]
  95. Xi L., Cho K. W., Tu S. C. 1991; Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound. Journal of Bacteriology 173 1399 1405
    [Google Scholar]
  96. Zhang L., Kerr A. 1991; A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens. Journal of Bacteriology 173 1867 1872
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-7-1289
Loading
/content/journal/micro/10.1099/00221287-138-7-1289
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error