Effect of Ca and K on the intracellular pH of an L-form Free

Abstract

The L-form NC7, derived from K12, grew in a complex medium containing 0·2 M-CaCl as osmotic stabilizer, but not at pH values above 7·8. The cessation of growth at alkaline pH was not due to cell death. In complex media containing K or Na, the L-form grew over a wide pH range. Growth at alkaline pH was inhibited by 1 mM-amiloride, indicating that Na/H antiport activity was required for growth at alkaline pH. The internal pH (pH) of the L-form in media containing K, Na or Ca was constant at about 7·8 to 8·0 at external pH (pH) values of 7·2 and 8·2. The rates of O consumption by intact cells, lactate oxidation by membrane vesicles from cells grown in Ca-containing medium, and cell division were all strongly repressed under alkaline conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-6-1265
1992-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/6/mic-138-6-1265.html?itemId=/content/journal/micro/10.1099/00221287-138-6-1265&mimeType=html&fmt=ahah

References

  1. Beck J. C., Rosen B. P. 1979; Cation/proton antiport systems in Escherichia coli: properties of the sodium/proton antiporter. Archives of Biochemistry and Biophysics 94:208–214
    [Google Scholar]
  2. Booth I. R. 1985; Regulation of cytoplasmic pH in bacteria. Microbiological Reviews 49:359–378
    [Google Scholar]
  3. Brey R. N., Beck J. C., Rosen B. P. 1978; Cation/proton antiport systems in Escherichia coli. . Biochemical and Biophysical Research Communications 83:1588–1594
    [Google Scholar]
  4. Brey R. N., Rosen B. P. 1979; Cation/proton antiport systems in Escherichia coli: properties of the sodium/proton antiporter. Journal of Biological Chemistry 254:1957–1963
    [Google Scholar]
  5. Brey R. N., Rosen B. P., Sorensen E. N. 1980; Cation/proton antiport system in Escherichia coli: properties of the potassium/ proton antiporter. Journal of Biological Chemistry 255:39–44
    [Google Scholar]
  6. Deamer D. W., Prince R. C., Crofts A. R. 1972; The response of fluorescent amines to pH gradients across liposome membranes. Biochimica et Biophysica Acta 274:323–335
    [Google Scholar]
  7. Epstein W., Laimins L. 1980; Potassium transport in Escherichia coli: diverse systems with common control by osmotic forces. Trends in Biochemical Sciences 5:21–23
    [Google Scholar]
  8. Ishikawa T., Hama H., Tsuda M., Tsuchiya T. 1987; Isolation and properties of a mutant of Escherichia coli possessing defective Na+/H+ antiporter. Journal of Biological Chemistry 262:7443–7446
    [Google Scholar]
  9. Jayakumar A., Barnes E. M. Jr 1983; A filtration method for measuring cellular uptake of [14C]methylamine and other highly permeant solutes. Analytical Biochemistry 135:475–478
    [Google Scholar]
  10. King J. R. 1986; L-forms of group D Streptococcus . The Bacterial L-Forms43–58 Madoff S. New York: Marcel Dekker;
    [Google Scholar]
  11. McMorrow I., Shuman H. Δ., Sze D., Wilson D. M., Wilson Τ. H. 1989; Sodium/proton antiport is required for growth of Escherichia coli at alkaline pH. Biochimica et Biophysica Acta 981:21–26
    [Google Scholar]
  12. Mochizuki-Oda N., Oosawa F. 1985; Amiloride-sensitive Na+-H+ antiporter in Escherichia coli . Journal of Bacteriology 163:395–397
    [Google Scholar]
  13. Onoda T. 1986; Isolation and its characters of Escherichia coli K-12, L-form. Memoirs of the Faculty of Science of Shimane University 20:678–683
    [Google Scholar]
  14. Onoda T., Oshima A. 1988; Effects of Ca2+ and a protonophore on growth of an Escherichia coli L-form. Journal of General Microbiology 134:3071–3077
    [Google Scholar]
  15. Onoda T., Oshima Δ., Nakano S., Matsuno Δ. 1987; Morphology, growth and reversion in a stable L-form of Escherichia coli K12. Journal of General Microbiology 133:527–534
    [Google Scholar]
  16. Onoda T., Shinjou H., Oshima A. 1989; Cation/proton antiport systems in Escherichia coli Κ12, L-form NC7. Memoirs of the Faculty of Science of Shimane University 23:99–106
    [Google Scholar]
  17. Padan E., Zilberstein D., Schuldiner S. 1981; pH homeostasis in bacteria. Biochimica et Biophysica Acta 650:151–166
    [Google Scholar]
  18. Rink T. J., Tsien R. Y., Pozzan T. 1982; Cytoplasmic pH and free Mg2+ in lymphocytes. Journal of Cell Biology 95:189–196
    [Google Scholar]
  19. Rosen B. P. 1987; Bacterial calcium transport. Biochimica et Biophysica Acta 906:101–110
    [Google Scholar]
  20. Roth W. G., Leckie M. P., Dietzler D. 1985; Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli . Biot hemical and Biophysical Research Communications 126:434–441
    [Google Scholar]
  21. Bottenberg H. 1979; The measurement of membrane potential and ΔpH in ceils, organelles, and vesicles. Methods in Enzymology 55:547–569
    [Google Scholar]
  22. Schuldiner S., Fishkes H. 1978; Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. . Biochemistry 17:706–711
    [Google Scholar]
  23. Zilberstein D., Agmon V., Schuldiner S., Padan E. 1982; The sodium/proton antiporter is part of the pH homeostasis mechanism in Escherichia coli. . Journal of Biological Chemistry 257:3687–3691
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-6-1265
Loading
/content/journal/micro/10.1099/00221287-138-6-1265
Loading

Data & Media loading...

Most cited Most Cited RSS feed