1887

Abstract

In addition to GvpA, the main structural protein, an SDS-soluble protein has been found in gas vesicles isolated from six different genera of cyanobacteria. N-terminal sequence analysis of the first 30 to 60 residues of the gel-purified proteins showed that they were homologous to GvpC, a protein that strengthens the gas vesicle in . The proteins from some of the organisms showed rather low homology, however, and this may explain why the genes that encode them have not been found by Southern hybridization studies. The gas vesicles of another cyanobacterium, , contained two SDS-soluble proteins ( 17000 and 35000) that were identical in sequence for the first 24 residues but not thereafter; these two proteins showed no clear homology to GvpC. The sequence of GvpA, the main structural gas vesicle protein, was very similar in each of the organisms investigated. GvpA from the purple bacterium was different for the first 8 residues but 51 of the next 56 residues were identical to those of the cyanobacterial GvpA. Analysis of the GvpA and GvpC sequences provides support for the idea that the low diversity of GvpA reflects a high degree of conservation rather than a recent origin followed by lateral gene transfer between different bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-6-1243
1992-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/6/mic-138-6-1243.html?itemId=/content/journal/micro/10.1099/00221287-138-6-1243&mimeType=html&fmt=ahah

References

  1. Armstrong R. E., Hayes P. K., Walsby A. E. 1983; Gas vacuole formation in hormogonia of Nostoc muscorum . Journal of General Microbiology 128:263–270
    [Google Scholar]
  2. Blaurock A. E., Walsby A. E. 1976; Crystalline structure of the gas vesicle wall from Anabaena flos-aquae . Journal of Molecular Biology 105:183–199
    [Google Scholar]
  3. Bowen C. C., Jensen T. E. 1965; Blue-green algae: fine structure of the gas vacuoles. Science 147:1460–1462
    [Google Scholar]
  4. Damerval T., Houmard J., Guglielmi G., Csiszar K., Tandeau de Marsac N. 1987; A developmental regulated gvp ABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix 7601. Gene 54:83–92
    [Google Scholar]
  5. Damerval T., Castets Α.-Μ., Guglielmi G., Houmard J., Tandeau de Marsac N. 1989; Occurrence and distribution of gas vesicle genes among cyanobacteria. Journal of Bacteriology 171:1445–1452
    [Google Scholar]
  6. Damerval T., Castets Α.-Μ., Houmard J., Tandeau de Marsac N. 1991; Gas vesicle synthesis in the cyanobacterium Pseudanabaena sp. : occurrence of a single photoregulated gene. Molecular Microbiology 5:657–664
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Eichler B., Pfennig N. 1986; Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Archives of Microbiology 146:295–300
    [Google Scholar]
  9. Hayes P. K., Walsby A. E. 1986; The inverse correlation between width and strength of gas vesicles in cyanobacteria. British Phycological Journal 21:191–197
    [Google Scholar]
  10. Hayes P. K., Walsby A. E., Walker J. E. 1986; Complete amino acid sequence of cyanobacterial gas-vesicle protein indicates a 70-residue molecule that corresponds in size to the crystallographic unit cell. Biochemical Journal 236:31–36
    [Google Scholar]
  11. Hayes P. K., Lazarus C. M., Bees Α., Walker J. E., Walsby A. E. 1988; The protein encoded by gvpC is a minor component of gas vesicles isolated from the cyanobacteria Anabaena flos-aquae and Microcystis sp . Molecular Microbiology 2:545–552
    [Google Scholar]
  12. Hayes P. K., Buchholz B., Walsby A. E. 1992; Gas vesicles are strengthened by the outer-surface protein, GvpC. Archives of Microbiology in the Press
    [Google Scholar]
  13. Horne M., Englert C, Wimmer C., Pfeifer F. 1991; A DNA region of 9 kbp contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Molecular Microbiology 5:1159–1174
    [Google Scholar]
  14. Jones J. G., Young D. C., DasSarma S. 1991; Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNCRlOO. Gene 102:117–122
    [Google Scholar]
  15. Jost M. 1965; Die Ultrastruktur von Oscillatoria albescens D.C. Archiv fur Mikrobiologie 50:211–245
    [Google Scholar]
  16. Jung Α., Sippel A. E., Grez M., Schutz G. 1980; Exons encode functional and structural units of chicken lysozyme. Proceedings of the National Academy of Sciences of the United States of America 77:5759–5763
    [Google Scholar]
  17. Laemmli IJ. Κ. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  18. Powell R. S., Walsby A. E., Hayes P. K., Porter R. 1991; Antibodies to the N-terminal sequence of GVPa bind to the ends of gas vesicles. Journal of General Microbiology 137:2395–2400
    [Google Scholar]
  19. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure culture of cyanobacteria. Journal of General Microbiology 111:1–61
    [Google Scholar]
  20. Simon R. 1981; Morphology and protein composition of gas vesicles from wild type and gas vacuole deficient strains of Halobacterium halobium strain 5. Journal of General Microbiology 125:103–111
    [Google Scholar]
  21. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971; Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35:171–205
    [Google Scholar]
  22. Surek B., Plllay B., Roest U., Beyreuther K., Goebel W. 1988; Evidence for two different gas vesicle proteins and genes in Halobacterium halobium . Journal of Bacteriology 70:1746–1751
    [Google Scholar]
  23. Tandeau de Marsac N., Mazel D., Bryant D. A., Houmard J. 1985; Molecular cloning and nucleotide sequence of a developmen-tally regulated gene from the cyanobacterium Calothrix PCC 7601 : a gas vesicle protein gene. Nucleic Acids Research 13:7223–7236
    [Google Scholar]
  24. Van Liere L., Mur L. 1978; Light-limited cultures of the blue-green alga Oscillatoria agardhii . Mitteilungen der Internationalen Vereinigung fur theoretische und angewandte Limnologie 21:158–167
    [Google Scholar]
  25. Walker J. E., Walsby A. E. 1983; Molecular weight of gas-vesicle protein from the planktonic cyanobacterium Anabaena flos-aquae and implications for structure of the vesicle. Biochemical Journal 209:809–815
    [Google Scholar]
  26. Walker J. E., Hayes P. K., Walsby A. E. 1984; Homology of gas vesicle proteins in cyanobacteria and halobacteria. Journal of General Microbiology 130:2709–2715
    [Google Scholar]
  27. Walsby A. E. 1971; The pressure relationships of gas vacuoles. Proceedings of the Royal Society B178:301–326
    [Google Scholar]
  28. Walsby A. E. 1974; The isolation of gas vesicles from blue-green algae. Methods in Enzymology 31:678–686
    [Google Scholar]
  29. Walsby A. E. 1991; The mechanical properties of the Microcystis gas vesicle. Journal of General Microbiology 137:2401–2408
    [Google Scholar]
  30. Walsby A. E., Bleything A. 1988; The dimensions of cyanobacterial gas vesicles in relation to their efficiency in providing buoyancy and withstanding pressure. Journal of General Microbiology 134:2635–2645
    [Google Scholar]
  31. Walsby A. E., Booker M. J. 1980; Changes in buoyancy of a planktonic blue-green alga in response to light intensity. British Phycological Journal 15:311–319
    [Google Scholar]
  32. Walsby A. E., Hayes P. K. 1988; The minor cyanobacterial gas vesicle protein, GVPc, is attached to the outer surface of the gas vesicle. Journal of General Microbiology 134:2647–2657
    [Google Scholar]
  33. Walsby A. E., Hayes P. K. 1989; Gas vesicle proteins. Biochemical Journal 264:313–322
    [Google Scholar]
  34. Walsby A. E., Van Run J., Cohen Y. 1983; The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake. Proceedings of the Royal Society of London B217:417–447
    [Google Scholar]
  35. Woese C. R. 1987; Bacterial evolution. Microbiological Reviews 51:221–271
    [Google Scholar]
  36. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms : proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87:4576–4579
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-6-1243
Loading
/content/journal/micro/10.1099/00221287-138-6-1243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error