1887

Abstract

The temperate bacteriophage mv4 is representative of a widespread phage genetic group of subsp. or . The genome of this phage is circularly permuted and terminally redundant, as shown by mature mv4 homoduplexes, Southern hybridization and restriction enzyme analysis. A circular map of the mv4 genome was established, with unique sequences totalling 36 kb. The genomic location of the site (packaging site of mv4 DNA into phage heads) and the site (phage integration site into the host cell chromosome) was determined. The genes coding for the two main structural phage proteins and for a phage-associated lysin were also mapped. Phage mv4 is capable of transducing a limited set of pieces of bacterial DNA and several specific chromosomal attachment sites of phage mv4 were identified. Bacteria lysogenic for phage mv4 were shown to be immune to infection by virulent phages related to mv4.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-6-1139
1992-06-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/6/mic-138-6-1139.html?itemId=/content/journal/micro/10.1099/00221287-138-6-1139&mimeType=html&fmt=ahah

References

  1. BoiZET B., Flickinger J. L., Chassy B. M. 1988; Transfection of Lactobacillus bulgaricus protoplasts by bacteriophage DNA. Applied and Environmental Microbiology 54:3014–3018
    [Google Scholar]
  2. Boizet B., Lahbib-Mansais Y., Dupont L., Ritzenthaler P., Mata M. 1990; Cloning, expression and sequence analysis of an endolysin-encoding gene of Lactobacillus bulgaricus bacteriophage mvl. Gene 94:61–67
    [Google Scholar]
  3. Bolivar F., Rodriguez R. I., Greene P. J., Betlach M. C, Heynecker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles, II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. A. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . Journal of Molecular Biology 41:459–470
    [Google Scholar]
  5. Campbell A. M. 1962; Episomes. Advances in Genetics 11:101–145
    [Google Scholar]
  6. Casjens S., Huang W. M., Hayden M., Parr R. 1987; Initiation of bacteriophage P22 DNA packaging series: analysis of a mutant that alters the DNA target specificity of the packaging apparatus. Journal of Molecular Biology 194:411–422
    [Google Scholar]
  7. Chelata C A., Margolin P. 1974; Effects of deletions on co-transduction linkage in Salmonella typhimurium. Evidence that bacterial chromosome deletions affect the formation of transducing DNA fragments. Molecular and General Genetics 131:97–112
    [Google Scholar]
  8. Cluzel P. J., Veaux M., Rousseau M., Accolas J. P. 1987; Evidence for temperate bacteriophages in two strains of Lactobacillus bulgaricus . Journal of Dairy Research 54:397–405
    [Google Scholar]
  9. Deichelbohrer I., Messer W., Trautner T. A. 1982; Genome of Bacillus subtilis bacteriophage SPP1, structure and nucleotide sequence of pac, the origin of DNA packaging. Journal of Virology 41:83–90
    [Google Scholar]
  10. De Man J. C, Rogosa M., Sharpe M. E. 1960; A medium for cultivation of Lactobacilli. Journal of Applied Bacteriology 23:1 SO-
    [Google Scholar]
  11. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  12. Hottinger H., Ohgi T., Zwahlen M.-C, Dhamija S., Soll D. 1987; Allele-specific complementation of an Escherichia coli leuB mutation by a Lactobacillus bulgaricus tRN A gene. Gene 60:149–152
    [Google Scholar]
  13. Jackson E. N., Jackson D. A., Deans R. J. 1978; £coRI analysis of bacteriophage P22 DNA packaging. Journal of Molecular Biology 118:365–388
    [Google Scholar]
  14. Johnson D. A., Gaustch J. W. Sportsman J. R., Elder J. H. 1984; Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analytical Technology 1:3–8
    [Google Scholar]
  15. Just W., Klotz G. 1990; Terminal redundancy and circular permutation of mycoplasma virus L3 DNA. Journal of General Virology 71:2157–2162
    [Google Scholar]
  16. Kandler O., Weiss N. 1986; Regular, nonsporing Gram-positive rods. Bergey’ s Manual of Systematic Bacteriology 2:1208–1260 Sneath P. H. A., Mair N. S., Sharpe M. N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Langella P., Chopin A. 1987; Conjugal transfer of plasmid pIP501 from Lactococcus lactis to Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus helveticus. FEMS Microbiology Letters 60:149–152
    [Google Scholar]
  18. Lahbib-Mansais Y., Mata M., Ritzenthaler P. 1988; Molecular taxonomy of Lactobacillus phages. Biochimie 70:429–435
    [Google Scholar]
  19. Lakshmidevi G., Davidson B. E., Hillier A. J. 1988; Circular permutation of the genome of a temperate bacteriophage from Streptococcus cremoris BK5. Applied and Environmental Microbiology 54:1039–1045
    [Google Scholar]
  20. Le Bourgeois P., Mata M., Ritzenthaler P. 1989; Genome comparison of Lactococcus strains by pulsed-field gel electrophoresis. FEMS Microbiology Letters 59:65–70
    [Google Scholar]
  21. McClelland M., Jones R., Patel Y., Nelson M. 1987; Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Research 15:5985–6005
    [Google Scholar]
  22. Masters M. 1985; Generalized transduction. The Genetics of Bacteria197–215 Scaife J. G., Leach D., Galizzi A. New York: Academic Press;
    [Google Scholar]
  23. Mata M., Trautwetter A., Luthaud G., Ritzenthaler P. 1986; Thirteen virulent and temperate bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis belong to a single DNA homology group. Applied and Environmental Microbiology 52:812–818
    [Google Scholar]
  24. Mead D. A. Szczesna N, Kemper B. 1986; Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Engineering 1:67–74
    [Google Scholar]
  25. Minton N. P. 1984; Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31:269–273
    [Google Scholar]
  26. Mollet B., Delle γ M. 1990; Spontaneous deletion formation within the β-galactosidase gene of Lactobacillus bulgaricus . Journal of Bacteriology 172:5670–5676
    [Google Scholar]
  27. Mollet B., Delley M. 1991; A β-galactosidase deletion mutant of Lactobacillus bulgaricus reverts to generate an active enzyme by internal DNA sequence duplication. Molecular and General Genetics 111:17–21
    [Google Scholar]
  28. Pittet A. C., Hottinger H. 1989a; Sequence of a hexameric tRNA gene cluster associated with rRNA genes in Lactobacillus bulgaricus . Nucleic Acids Research 17:4873
    [Google Scholar]
  29. Pittet A. C., Hottinger H. 1989; A Lactobacillus bulgaricus DNA fragment containing a 5S RNA gene adjacent to a pentameric tRNA gene cluster. Nucleic Acids Research 17:4874
    [Google Scholar]
  30. Reed K. C., Mann D. A. 1985; Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Research 13:7207–7221
    [Google Scholar]
  31. Rigby P. W., Dieckman M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  32. Russel M., Model P. 1984; Replacement of Mas ftp gene of E. coli by an inactive gene cloned on a plasmid. Journal of Bacteriology 159:1034–1039
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schmidt B. F., Adams R. M., Requadt C, Power S., Mainzer S. E. 1989; Expression and nucleotide sequence of the Lactobacillus bulgaricus β-galactosidase gene cloned in Escherichia coli . Journal of Bacteriology 171:625–635
    [Google Scholar]
  35. Schon A., Hottinger H., Soll D. 1988; Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus . Biochimie 70:391–394
    [Google Scholar]
  36. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  37. Sternberg N., Coulby J. 1987; Recognition and cleavage of the bacteriophage PI packaging site (pac).I. Differential processing of the cleaved ends in vivo . Journal of Molecular Biology 194:453–468
    [Google Scholar]
  38. Tabor S., Richardson C. 1985; A bacteriophage T7 RNA polymerase promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America 82:1074–1078
    [Google Scholar]
  39. Trautwetter A., Ritzenthaler P., Alatossava T., Mata-Gilsinger M. 1986; Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. Journal of Virology 59:551–555
    [Google Scholar]
  40. Waterbury P. G., Lane M. J. 1987; Generation of lambda phage concatemers for use as pulsed field electrophoresis size markers. Nucleic Acids Research 15:3930
    [Google Scholar]
  41. Weaver S., Levine M. 1977; Recombinational circularization of Salmonella phage P22 DNA. Virology 76:29–38
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-6-1139
Loading
/content/journal/micro/10.1099/00221287-138-6-1139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error