1887

Abstract

Summary: is a terrestrial bacterium that occurs as a symbiont of soil nematodes, and has also been isolated from human wounds. Unlike the several species of marine bioluminescent bacteria, has been discovered to grow in an atmosphere of 100% oxygen. Under these conditions the bioluminescence is greater, and this can be attributed in part to an increased synthesis of luciferase. At the same time, cells also produce superoxide dismutase (SOD), whose activity is also increased after growth in 100% oxygen. The patterns of induction suggest that the two enzymes are co-regulated; possible evolutionary relationships are considered.

Funding
This study was supported by the:
  • Fapesp, CNPq (Brazil) and to J. W. H. (Award DMB 86-16522)
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-4-831
1992-04-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/4/mic-138-4-831.html?itemId=/content/journal/micro/10.1099/00221287-138-4-831&mimeType=html&fmt=ahah

References

  1. Akhurst R. J., Boemare E. N. 1988; A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed evolution of the subspecies of X. nematophilus to species. Journal of General Microbiology 134:1835–1845
    [Google Scholar]
  2. Amano A., Shizukuishi S., Tamagawa H., Iwakura K., Tsun-asawa S., Tsunemitsu A. 1990; Characterization of superoxide dismutases purified from either anaerobically maintained or aerated Bacteroides gingivalis . Journal of Bacteriology 172:1457–1463
    [Google Scholar]
  3. Anderson C., Tu S., -C. & Hastings J. W. 1980; Subunit exchange between and specific activities of mutant bacterial luciferases. Biochemical and Biophysical Research Communications 95:1180–1186
    [Google Scholar]
  4. Baldwin T. O., Hastings J. W., Riley P. L. 1978; Proteolytic inactivation of the luciferase from the luminous marine bacterium Beneckea harveyi . Journal of Biological Chemistry 253:5551–5554
    [Google Scholar]
  5. Boemare N. E., Akhurst R. J. 1988; Biochemical and physiological characterization of colony from variants in Xenorhabdus spp. (Enterobacteriaceae). Journal of General Microbiology 134:751–761
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Cao J., -G. & Meighen E. A. 1989; Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi . Journal of Biological Chemistry 264:21670–21676
    [Google Scholar]
  8. Colepicolo P., Cho K.-W., Poinar G. O., Hastings J. W. 1989; Growth and luminescence of the bacterium Xenorhabdus luminescens from a human wound. Applied and Environmental Microbiology 55:2601–2606
    [Google Scholar]
  9. Dunlap J., Hastings J. W. 1981; Biochemistry of dinoflagellate bioluminescence: The purification and characterization of dinoflagellate luciferin from Pyrocystis lunula . Biochemistry 20:983–989
    [Google Scholar]
  10. Eberhard A., Eberhard, C” Kenyon G., Nealson K. H., Oppenheimer N. H. 1981; Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449
    [Google Scholar]
  11. Farmer J. J. III, Jorgensen J., H” Grimont P. A. D., Akhurst R. J., Poinar G. O., Jr, Pierce G. V., Smith J. A., Carter G. P., Wilson K., Hickman-Brenner F. W. 1989; Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. Journal of Clinical Microbiology 27:1594–1600
    [Google Scholar]
  12. Fridovich I. 1981 In Oxygen and Oxyradicals on Chemistry and Biology, pp. 197–204 Edited by Rodgers M. A. J., Powers E. L. New York: Academic Press;
    [Google Scholar]
  13. Gregory E. M. 1985; Characterization of the O2-induced manganese-containing superoxide dismutase from Bacteroides fragilis . Archives of Biochemistry and Biophysics 238:83–89
    [Google Scholar]
  14. Gregory E. M., Fridovich I. 1973; Induction of superoxide dismutase by molecular oxygen. Journal of Bacteriology 114:543–548
    [Google Scholar]
  15. Gregory E., M” Goscin S. A., Fridovich I. 1974; Superoxide dismutase and oxygen toxicity in a eukaryote. Journal of Bacteriology 117:456–460
    [Google Scholar]
  16. Gregory E. M., Dapper C. H. 1983; Isolation of iron-containing superoxide dismutase from Bacteroides fragilis: reconstitution as a Mn-containing enzyme. Archives of Biochemistry and Biophysics 220:293–300
    [Google Scholar]
  17. Hastings J. W. 1952; Oxygen concentration and bioluminescence intensity. I: Bacteria and fungi. Journal of Cellular and Comparative Physiology 39:1–30
    [Google Scholar]
  18. Hastings J. W. 1955; The effect of oxygen concentration upon the luminescence of bacterial extracts. Anatomical Record 122:458
    [Google Scholar]
  19. Hastings J. W. 1982; Oxygen containing intermediates and the emitting species in bioluminescent reactions. In Oxygenases and Oxygen Metabolism pp. 225–237 Edited by Nozaki M., Yamamoto S., Ishimura Y., Coon M., Ernster L., Estabrook R. New York: Academic Press;
    [Google Scholar]
  20. Hastings J. W. 1983; Biological diversity, chemical mechanisms and evolutionary origins of bioluminescent systems. Journal of Molecular Evolution 19:309–321
    [Google Scholar]
  21. Hastings J. W., Weber G. 1963; Total quantum flux of isotropic sources. Journal of the Optical Society of America 53:1410–1415
    [Google Scholar]
  22. Hastings J., W” Potrikus C. J., Gupta S., Kürfurst M., Makemson J. C. 1985; Biochemistry and physiology of bio-luminescent bacteria. Advances in Microbial Physiology 26:235–291
    [Google Scholar]
  23. Hodgson E. K., Fridovich I. 1973; Role of superoxide in the chemiluminescence of luminol. Photochemistry and Photobiologv 18:451–455
    [Google Scholar]
  24. Holzman T. F., Baldwin T. O. 1981; Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the FMNH2 site. Biochemistry 20:5524–5528
    [Google Scholar]
  25. Holzman T. F., Baldwin T. O. 1982; Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine- sepharose: phosphate mediated binding to an immobilized substrate analog. Biochemistry 24:6194–6201
    [Google Scholar]
  26. Johnston T. C., Rucker E. B., Cochrum L., Hruska K. S., Vandegrift V. 1990; The nucleotide sequence of the luxA and luxB genes of Xenorhabdus luminescens HM and a comparison of the amino acid sequences of luciferases form four species of bioluminescent bacteria. Biochemical and Biophysical Research Communications 170:407–415
    [Google Scholar]
  27. Kurfürst M., Ghisla S., Hastings J. W. 1983; Bioluminescence emission from the reaction of the luciferase-FMN-radical with O2 . Biochemistry 22:1521–1525
    [Google Scholar]
  28. Lloyd D., James C. J., Hastings J. W. 1985; Oxygen affinities of the bioluminescence systems of various species of luminous bacteria. Journal of General Microbiology 131:2137–2140
    [Google Scholar]
  29. McCord J. M., Fridovich I. 1969; Superoxide dismutase. An enzymic function for erthrocuprein (hemocuprein). Journal of Biological Chemistry 244:6049–6055
    [Google Scholar]
  30. McElroy W. D., Seliger H. H. 1962; Origin and Evolution of Bioluminescence. In Horizons in Biochemistry, pp. 91–101 Edited by Kasha M., Pullman B. New York: Academic Press;
    [Google Scholar]
  31. Meighen E. A. 1988; Enzymes and genes from the LUX operons of bioluminescent bacteria. Annual Review of Microbiology 42:151–176
    [Google Scholar]
  32. Mitchell G., Hastings J. W. 1971; A stable, inexpensive solid state photomultiplier photometer. Analytical Biochemistry 39:243250
    [Google Scholar]
  33. Nealson K. 1978; Isolation, identification and manipulation of luminous bacteria. In Methods in Enzymology, pp. 153–166 Edited by DeLuca M. New York: Academic Press;
    [Google Scholar]
  34. Nealson K., Hastings J. W. 1977; Low oxygen is optimal for luciferase synthesis in some bacteria: ecological implications. Archives of Microbiology 112:9–16
    [Google Scholar]
  35. Nealson K., Hastings K. W. 1991; The luminous bacteria. In The Prokaryotes, 2nd edn, pp. 625–639 Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer-Verlag;
    [Google Scholar]
  36. Njus D., Baldwin T. O., Hastings J. W. 1974; A sensitive assay for proteolytic enzymes using bacterial luciferase as a substrate. Analytical Biochemistry 61:280–287
    [Google Scholar]
  37. Pennington C. D., Gregory E. M. 1986; Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron . Journal of Bacteriology 166:528–532
    [Google Scholar]
  38. Poinar G. O., Jr, Thomas G., Haygood M., Nealson K. H. 1980; Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode Heterorhabditis bacterio-phora . Soil Biology and Biochemistry 12:5–10
    [Google Scholar]
  39. Seliger H. H. 1975; The origin of bioluminescence. Photochemistry and Photobiology 21:355–361
    [Google Scholar]
  40. Waters C. A., Hastings J. W. 1977; Mutants of luminous bacteria with an altered control of luciferase synthesis. Journal of Bacteriology 131:519–525
    [Google Scholar]
  41. Xi L., Cho K.-W., Tu S.-C. 1991; Cloning and nucleotide sequences of LUX genes and characterization of luciferase of Xenorhabdus luminescens from a human wound. Journal of Bacteriology 173:1399–1405
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-4-831
Loading
/content/journal/micro/10.1099/00221287-138-4-831
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error