1887

Abstract

Summary: The genetic analysis of 16 recessive mutants in deficient in the metabolism of protocatechuic acid (PCA) has revealed seven functional genes. The seven gene loci are distributed over three chromosomes: and on linkage group II; and on group V, and on group VIII, where it shows linkage [recombination frequency (RF) = 6·9%] to the gene cluster controlling the degradation of quinic acid to PCA. Only two of the gene loci are closely linked: and (RF = 0·8%). The properties of the and mutants clearly demonstrate the separate identity and regulation of the converging pathways from quinate or benzoate to PCA, which in turn is oxidatively degraded through β-ketoadipate to TCA intermediates. Similarly, the mutants are not affected in the metabolism of salicylate to catechol and its oxidation to β-ketoadipate, although two genes ( and ) are required for the further metabolism of β-ketoadipate. Catechol dioxygenase is induced by growth in the presence of salicylate, and PCA dioxygenase by benzoate or quinate. Three groups of mutants ( and ) are deficient in the induction of PCA oxygenase and accumulate PCA when grown in the presence of quinate or benzoate. All three mutants and the single strain totally lack PCA oxygenase activity, while a single mutant strain has properties tentatively suggesting a positive role in the induction of the PCA pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-4-817
1992-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/4/mic-138-4-817.html?itemId=/content/journal/micro/10.1099/00221287-138-4-817&mimeType=html&fmt=ahah

References

  1. cain r. b. 1980; the uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms. in lignin degradation; microbiology, chemistry and potential applications vol. 1 pp. 21–60 edited by kent kirk t., higuchi t., chang h. boca raton, fla.: crc press;
    [Google Scholar]
  2. cain r. b., bilton R. F., Darrah J. A. 1968; The metabolism of aromatic acids by microorganisms. Biochemical Journal 108:797–828
    [Google Scholar]
  3. Charles I. G., Keyte J. W., Brammar W. J., Smith M., Hawkins A. R. 1986; The isolation and nucleotide sequence of the complex arom locus of Aspergillus nidulans . Nucleics Acid Research 14:2201–2213
    [Google Scholar]
  4. Cook K. A., Cain R. B. 1974; Regulation of aromatic metabolism in the fungi. Metabolic control of 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa . Journal of General Microbiology 85:37–50
    [Google Scholar]
  5. Dagley S. 1971; Catabolism of aromatic compounds by microorganisms. Advances in Microbial Physiology 6:1–42
    [Google Scholar]
  6. Doten R. C., Ngai K. L., Mitchell D. J., Ornston L. N. 1987; Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus . Journal of Bacteriology 169:3168–3174
    [Google Scholar]
  7. Giles N. H., Case M. E., Baum J., Geiver R., Huiet L., Patel V., Tyler B. 1985; Gene organization and regulation in the qa (quinic acid), gene cluster of Neurospora crassa . Microbiological Reviews 49:338–358
    [Google Scholar]
  8. Grant S., Roberts C. F., Lamb H., Stout M., Hawkins A. R. 1988; Genetic regulation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans . Journal of General Microbiology 134:347–358
    [Google Scholar]
  9. Hastie A. C. 1970; Benlate induced mitotic instability of Aspergillus diploids. Nature, London 226:771
    [Google Scholar]
  10. Hawkins A. R. 1987; The complex AROM locus of Aspergillus nidulans: evidence for multiple gene fusions and convergent evolution. Current Genetics 11:491–498
    [Google Scholar]
  11. Hawkins A. R., Roberts C. F. 1989; Molecular interactions between the quinic acid catabolic and shikimate pathways in Aspergillus nidulans. . In Molecular Biology of Filamentous Fungi vol. 6 pp. 85–100 Edited by Nevalainen H., Penttila M. Helsinki: Foundation for Biotechnical and Industrial Research;
    [Google Scholar]
  12. Holloway B. W., Morgan A. F. 1986; Genome organization in Pseudomonas . Annual Review of Microbiology 40:79–105
    [Google Scholar]
  13. Hynes M. J., Kelly J. M. 1981; Threonine, quinate and glucuronic acid utilization mutants of Aspergillus nidulans . Aspergillus News Letter 15:18–21
    [Google Scholar]
  14. Lamb H. K., Hawkins A. R., Smith M., Harvey I. J., Brown J., Turner G., Roberts C. F. 1990; Spatial and biological organization of the complete quinic acid utilization gene cluster in Aspergillus nidulans . Molecular and General Genetics 223:17–23
    [Google Scholar]
  15. Lamb H. K., Bagshaw C. R., Hawkins A. R. 1991; In vivo overproduction of the pentafunctional AROM polypeptide in Aspergillus nidulans affects the metabolic flux in the quinate pathway. Molecular and General Genetics 227:187–196
    [Google Scholar]
  16. McCully K. S., Forbes E. 1965; The use of p-fluorophenylalanine with 'master strains' of Aspergillus nidulans for assigning genes for linkage groups. Genetical Research 6:352–359
    [Google Scholar]
  17. Neidle E. L., Hartnett C., Ornston L. N. 1989; Characterizations of Acinetobacter calcoaceticus CatM, a repressor gene homologous in sequence to transcriptional activator genes. Journal of Bacteriology 171:5410–5421
    [Google Scholar]
  18. Norris J. R., Ribbons D. W. 1971 Methods in Microbiology. London: Academic Press;
    [Google Scholar]
  19. Parke D., Ornston L. N. 1986; Enzymes of the β-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp and constitutive in Bradyrhizobium spp. Journal of Bacteriology 165:288–292
    [Google Scholar]
  20. Pontecorvo G., Kafer E. 1958; Genetic analysis based upon mitotic recombination. Advances in Genetics 9:71–104
    [Google Scholar]
  21. Powlowski J. B., Ingebrand J., Dagley S. 1985; Enzymology of the β-ketoadipate pathway in Trichosporon cutaneum . Journal of Bacteriology 163:1136–1141
    [Google Scholar]
  22. Shanley M. S., Neidle E. L., Parales R. E., Ornston L. N. 1986; Cloning and expression of Acinetobacter calcoaceticus catBCDE genes in Pseudomonas putida and Escherichia coli . Journal of Bacteriology 165:557–563
    [Google Scholar]
  23. Stanier R. Y., Ornston L. N. 1973; The β-ketoadipate pathway. Advances in Microbial Physiology 9:89–150
    [Google Scholar]
  24. Wheelis M. L. 1975; The genetics of dissimilatory pathways in Pseudomonas. . Annual Review of Microbiology 29:505–524
    [Google Scholar]
  25. Wheelis M. L., Stanier R. Y. 1970; The genetic control of dissimilatory pathways in Pseudomonas putida . Genetics 66:245–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-4-817
Loading
/content/journal/micro/10.1099/00221287-138-4-817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error