1887

Abstract

Summary: 3 5S-labelling experiments and Western blot analysis were used to investigate methionine induction of tyrosinase synthesis in synthesis of the enzyme occurred as a function of time and methionine concentration. Induction appeared to be relatively specific for methionine and closely related analogues. Under the conditions used, the enzyme was secreted rapidly, with little intracellular accumulation. Upon induction in the absence of Cu, apotyrosinase was synthesized at 70% of the level in control cultures provided with the cation. Inhibitor studies showed that both transcriptional and translational events are required for tyrosinase induction. Deletions in the ORF 438 region of the operon suggest that this sequence has a role in the phenotypic expression of tyrosinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-4-787
1992-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/4/mic-138-4-787.html?itemId=/content/journal/micro/10.1099/00221287-138-4-787&mimeType=html&fmt=ahah

References

  1. Baumann R., Ettlinger L., Hutter R., Kocher H. P. 1976; Control of melanin formation in Streptomyces glaucescens. . In Actinomycetes – the Boundary Organisms, pp. 55–63 Edited by Arai T. Tokyo, Japan: Toppan Company;
    [Google Scholar]
  2. Bernan V., Fipula D., Herber W., Katz E. 1985; The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. Gene 37:101–110
    [Google Scholar]
  3. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  5. Brown D. D., Hitchcock M. J. M., Katz E. 1980; Evidence for a constitutive and inducible form of kynurenine formamidase in an actinomycin-producing strain of Streptomyces parvulus . Archives of Biochemistry and Biophysics 202:18–22
    [Google Scholar]
  6. Della Ciooppa G., Garger S. J., Sverlow G. G., Turpen T. H., Grill L. K. 1990; Melanin production in Escherichia coli from a cloned tyrosinase gene. Bio I Technology 8:636–638
    [Google Scholar]
  7. Crameri R., Ettlinger L., Hutter R., Lerch K., Suter M. A., Vetterli J. A. 1982; Secretion of tyrosinase in Streptomyces glaucescens . Journal of General Microbiology 128:371–379
    [Google Scholar]
  8. Foster J. W., Katz E. 1981; Control of actinomycin D biosynthesis in Streptomyces parvulus: regulation of tryptophan oxygenase activity. Journal of Bacteriology 148:670–677
    [Google Scholar]
  9. Geistlich M., Irniger S., Hütter R. 1989; Localization and functional analysis of the regulated promoter from the Streptomyces glaucescens mel operon. Molecular Microbiology 3:1061–1069
    [Google Scholar]
  10. Held T., Kutzner H. 1990; Transcription of the tyrosinase gene in Streptomyces michiganensis DMS 40015 is induced by copper and repressed by ammonium. Journal of General Microbiology 136:2413–2419
    [Google Scholar]
  11. Hintermann G., Zatchej M., Hutter R. 1985; Cloning and expression of the genetically unstable tyrosinase structural gene from Streptomyces glaucescens . Molecular and General Genetics 200:422–432
    [Google Scholar]
  12. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 In Genetic Manipulation of Streptomyces – a Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  13. Huber M., Hintermann G., Lerch K. 1985; Primary structure of tyrosinase from Streptomyces glaucescens . Biochemistry 24:6038–6044
    [Google Scholar]
  14. Huber M., HüTTER R., Lerch K. 1987; The promoter of the Streptomyces glaucescens mel operon. Nucleic Acids Research 15:8106
    [Google Scholar]
  15. Katz E., Betancourt A. 1988; Induction of tyrosinase by L-methionine in Streptomyces antibioticus . Canadian Journal of Microbiology 34:1297–1303
    [Google Scholar]
  16. Katz E., Goss W. A. 1959; Controlled biosynthesis of actinomycin with sarcosine. Biochemical Journal 73:458–465
    [Google Scholar]
  17. Katz E., Weissbach H. 1962; Biosynthesis of the actinomycin chromophore; enzymatic conversion of 4-methyl-3-hydroxy-anthranilic acid to actinocin. Journal of Biological Chemistry 237:882–886
    [Google Scholar]
  18. Katz E”, Thompson C. J., Hopwood D. A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans . Journal of General Microbiology 129:2703–2714
    [Google Scholar]
  19. Kuster E. 1976; Chromogenicity of actinomycetes. In Actinomycetes – the Boundary Organisms, pp. 43–54 Edited by Arai T. Tokyo, Japan: Toppan Company;
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  21. Lee Y., -H. W” Chen B.-F., Wu S.-Y., Leu W.-M., Lin J.-J., Chen C. W., Lo S. J. 1988; A trans-acting gene is required for the phenotypic expression of a tyrosinase gene in Streptomyces . Gene 65:71–81
    [Google Scholar]
  22. Lerch K. 1981; Copper monooxygenases: tyrosinase and dopamine β monooxygenase. In Metal Ions in Biological Systems, vol. 13 pp. 143–184 Edited by Sigel H. New York: Marcel Dekker;
    [Google Scholar]
  23. Lerch K., Ettlinger L. 1972; Purification and characterization of tyrosinase from Streptomyces glaucescens . European Journal of Biochemistry 31:427–437
    [Google Scholar]
  24. Marinus M. G. 1987; DNA methylation in Escherichia coli . Annual Reviews of Genetics 21:113–131
    [Google Scholar]
  25. Pugsley A. P., d'Enfert C., Reyss I., Kornacker M. G. 1990; Genetics of extracellular protein secretion by gram-negative bacteria. Annual Review of Genetics 24:67–90
    [Google Scholar]
  26. Springer T. A. 1987; Immunoprecipitation. In Current Protocols in Molecular Biology Chapter 10,10.16. Edited by Ausubel F. M. New York: Greene Publishing Association & Wiley Interscience;
    [Google Scholar]
  27. Sternberg N. 1985; Evidence that adenine methylation influences DNA-protein interactions in Escherichia coli . Journal of Bacteriology 164:490–493
    [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 76:4350–4354
    [Google Scholar]
  29. Watson J. D., Hopkins N. H., Roberts J. W., Steitz J. A., Weiner A. M. (editors) 1987; Regulation of protein synthesis and function in bacteria. In Molecular Biology of the Gene, 4th edn pp. 465–502 Reading, MA: Benjamin/Cummings Publishing Co;
    [Google Scholar]
  30. Williams W. K., Katz E. 1977; Development of a chemically defined medium for the synthesis of actinomycin D by Streptomyces parvulus . Antimicrobial Agents and Chemotherapy 11:281–290
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-4-787
Loading
/content/journal/micro/10.1099/00221287-138-4-787
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error