1887

Abstract

SUMMARY: A turbidostat culture technique was used to study the effects of different salt shocks on the freshwater cyanobacteria sp. strain PCC 6803 and . Shocks were performed either suddenly or gradually, on both unacclimated cultures and those pre-acclimated to 0·77 -NaCl. All suddenly shocked cultures exhibited a decline in growth after a few hours, characterized by severely decreased metabolic activities (e.g. photosynthesis, respiration, glucose-6-phosphate dehydrogenase activity) and a time course of restoration which coincided with the accumulation of glucosylglycerol. Additionally, all untreated cultures had a late (after a few days) growth depression, distinguished by the stagnation of cell division. This was overcome by physiological adaptation of the whole cells or selection of cells with superior salt tolerance. The different types of growth depressions and the unique pattern of glucosylglycerol accumulation led to the conclusion that glucosylglycerol was necessary to maintain metabolic processes, but that this alone cannot account for successful salt acclimation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-2-363
1992-02-01
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/2/mic-138-2-363.html?itemId=/content/journal/micro/10.1099/00221287-138-2-363&mimeType=html&fmt=ahah

References

  1. Allen M. B., Arnon D. I. 1955; Studies on nitrogen-fixing blue-green algae. Plant Physiology 30:366–372
    [Google Scholar]
  2. Bothe H., Eisbrenner G. 1977; Effect of 7-azatryptophan on nitrogen fixation and heterocyst formation in the blue-green alga Anabaena cylindrica. Biochemie und Physiologie der Pflanzen 171:323–332
    [Google Scholar]
  3. Bottomley P. J., Van Baalen C., Tabita F. R. 1980; Heterocyst differentiation and tryptophan metabolism in the cyanobacterium Anabaena sp. CA. Archives of Biochemistry and Biophysics 203:204–213
    [Google Scholar]
  4. Chen C, Van Baalen C., Tabita F. R. 1987; Nitrogen starvation mediated by dl-7-azatryptophan in the cyanobacterium Anabaena sp. strain CA. Journal of Bacteriology 169:1107–1113
    [Google Scholar]
  5. Fogg G. E. 1944; Growth and heterocyst production in Anabaena cylindrica Lemm. New Phytologist 43:164–175
    [Google Scholar]
  6. Fogg G. E. 1949; Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism. Annals of Botany NS 13 241–259
    [Google Scholar]
  7. Kumar A., Kumar H. D. 1980; Differential effects of amino acid analogs on growth and heterocyst differentiation in two nitrogen-fixing blue-green algae. Current Microbiology 3:213–218
    [Google Scholar]
  8. Mitchison G. J., Wilcox M. 1972; Rule governing cell division in Anabaena. Nature, London 239:110–111
    [Google Scholar]
  9. Mitchison G. J., Wilcox M. 1973; Alteration in heterocyst pattern of Anabaena produced by 7-azatryptophan. Nature New Biology 246:229–233
    [Google Scholar]
  10. Rogerson A. C. 1979; Modifiers of heterocyst repression and spacing and formation of heterocysts without nitrogenase in the cyanobacterium Anabaena variabilis. Journal of Bacteriology 140:213–219
    [Google Scholar]
  11. Thiel T. 1990; Protein turnover and heterocyst differentiation in the cyanobacterium Anabaena variabilis. Journal of Phycology 26:50–54
    [Google Scholar]
  12. Thiel T., Leone M. 1986; Effect of glutamine on growth and heterocyst differentiation in the cyanobacterium Anabaena variabilis. Journal of Bacteriology 168:769–774
    [Google Scholar]
  13. Wilcox M., Mitchison G. J., Smith R. J. 1973; Pattern formation in the blue-green alga Anabaena. II. Controlled proheterocyst regression. Journal of Cell Science 13:637–649
    [Google Scholar]
  14. Wolk C. P. 1967; Physiological basis of the pattern of vegetative growth of a blue-green alga. Proceedings of the National Academy of Sciences of the United States of America 571246–1251
  15. Wolk C. P. 1975 Differentiation and pattern formation in filamentous blue-green algae. In Spores VI, pp. 85–96 Edited by Gerhardt P., Costilow R. N., Sadoff H. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Wolk C. P. 1989; Alternative models for the development of the pattern of spaced heterocysts in Anabaena (Cyanophyta). Plant Systematics and Evolution 164:27–31
    [Google Scholar]
  17. Allen M. B., Arnon D. I. 1955; Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiology 30:366–372
    [Google Scholar]
  18. Amzallag G. N., Lerner H. R., Poljakoff-Mayber A. 1990; Induction of increased salt tolerance in Sorghum bicolor by NaCl treatment. Journal of Experimental Botany 41:29–34
    [Google Scholar]
  19. Apte S. K., Bhagwat A. A. 1989; Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt. Journal of Bacteriology 171:909–915
    [Google Scholar]
  20. Apte S. K., Reddy B. R., Thomas J. 1987; Relationship between sodium influx and salt tolerance of nitrogen fixing cyanobacteria. Applied and Environmental Microbiology 53:1934–1939
    [Google Scholar]
  21. Armbrust E. V., Bowen J. D., Olson R. J., Chisholm S. W. 1989; Effect of light in the cell cycle of a marine Synechococcus strain. Applied and Environmental Microbiology 55:425–432
    [Google Scholar]
  22. Blumwald E, Tel-Or E. 1984; Salt adaptation of the cyanobacterium Synechococcus 6311 growing in a continuous culture (turbidostat). Plant Physiology 74:183–185
    [Google Scholar]
  23. Csonka L. N. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews 53:121–147
    [Google Scholar]
  24. Erdmann N., Schiewer U. 1978; Turbidostat culture of blue-green algae. II. Control system independent of pigmentation and organism adherence. Archiv fur Hydrobiologie, Suppl. 51, Algological Studies 21:456–467
    [Google Scholar]
  25. Erdmann N., Berg C., Hagemann M. 1989; Missing salt adaptation of Microcystis firma (cyanobacterium) in the dark. Archiv fur Hydrobiologie 114:521–530
    [Google Scholar]
  26. Gimmler H., Hartung W. 1988; Low permeability of the plasma membrane of Dunaliella parva for solutes. Journal of Plant Physiology 133:165–172
    [Google Scholar]
  27. Ginzburg M., Weizinger G., Cohen M., Ginzburg B. Z. 1990; The adaptation of Dunaliella to widely-differing salt concentrations. Journal of Experimental Botany 41:685–692
    [Google Scholar]
  28. Hagemann M., Erdmann N., Wittenburg E. 1989; Studies concerning enzyme activities in salt-loaded cells of the cyanobacterium Microcystis firma. Biochemie und Physiologie der Pflanzen 184:87–94
    [Google Scholar]
  29. Hagemann M., Wolfel L., Kruger B. 1990; Alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 after a salt shock. Journal of General Microbiology 136:1393–1399
    [Google Scholar]
  30. Heidenreich E., Sackrow G. 1978; Zur granulometrischen Analyse grobdisperser Stoffe mit dem TeilchengroBenanalysator 'Laborscale'. Labortechnik 11:16–20
    [Google Scholar]
  31. Jeanjean R., Onana B., Peschek G. A., Joset F. 1990; Mutants of the cyanobacterium Synechocystis PCC 6803 impaired in respiration and unable to tolerate high salt concentrations. FEMS Microbiology Letters 68:125–130
    [Google Scholar]
  32. Kerby N. W., Reed R. H., Rowell P. 1990; Incorporation of 14C in the cyanobacterium Synechococcus PCC 6301 following salt stress. Planta 181:393–398
    [Google Scholar]
  33. Kirst G. O. 1990; Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology 41:21–53
    [Google Scholar]
  34. Lefort-Tran M., Pouphile M., Spath S. 1988; Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity. Plant Physiology 87:767–775
    [Google Scholar]
  35. Lichtenthaler H. K. 1987; Chlorophylls and carotenoids. Pigments of photosynthetic biomembranes. Methods in Enzymology 148:350–382
    [Google Scholar]
  36. Mackay M. A., Norton R. S. 1987; 13C nuclear magnetic resonance study of biosynthesis of glucosylglycerol by a cyanobacterium under osmotic stress. Journal of General Microbiology 133:1535–1542
    [Google Scholar]
  37. Marino G. T., Asato Y. 1986; Characterization of cell cycle events in the dark in Anacystis nidulans. Journal of General Microbiology 132:2123–2127
    [Google Scholar]
  38. Molitor V., Trnka M., Erber W., Steffan I., Riviere M.-E., Arrio B., Springer-Lederer H., Peschek G. A. 1990; Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes from the cyanobacterium Anacystis nidulans. Archives of Microbiology 154:112–119
    [Google Scholar]
  39. Potts M., Ocampo-Friedmann R., Bowman M. A., Tözun B. 1983; Chroococcus S24 and Chroococcus N41 (cyanobacteria): morphological, biochemical and genetic characterization and effects of water stress on ultrastructure. Archives of Microbiology 135:81–90
    [Google Scholar]
  40. Reed R. H., Stewart W. D. P. 1988 The responses of cyanobacteria to salt stress. In Biochemistry of the Algae and Cyanobacteria, vol. 12 pp. 217–231 Edited by Rogers L. J., Gallon J. R. Oxford: Clarendon Press;
    [Google Scholar]
  41. Reed R. H., Warr S. R. C, Richardson D. L., Moore D. J., Stewart W. D. P. 1985; Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiology Letters 28:225–229
    [Google Scholar]
  42. Rivière M.-E., Arrio B., Steffan I., Molitor V., Kuntner O., Peschek G. A. 1990; Changes of some physical properties of isolated and purified plasma and thylakoid membrane vesicles from the freshwater cyanobacterium Synechococcus 6301 (Anacystis nidulans) during adaptation to salinity. Archives of Biochemistry and Biophysics 280:159–166
    [Google Scholar]
  43. Russell N. J. 1989; Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes 21:93–113
    [Google Scholar]
  44. Sadka A., Lers A., Zamir A., Avron M. 1989; A critical examination of the role of de novo protein synthesis in the osmotic adaptation of the halotolerant alga Dunaliella. FEBS Letters 244:93–98
    [Google Scholar]
  45. Schiewer U., Jonas L. 1977; Influence of different NaCl concentrations on the ultrastructure of blue-green algae. I. Microcystis firma. Archiv fur Protistenkunde 119:127–145
    [Google Scholar]
  46. Shively J. M., Bryant D. A., Fuller R. C, Konopka A. E., Stevens S. E. Jr & Strohl W. R. 1988; Functional inclusions in prokaryotic cells. International Review of Cytology 113:35–100
    [Google Scholar]
  47. Schobert B. 1980; The importance of water activity and water structure during hyperosmotic stress in algae and higher plants. Biochemie und Physiologie der Pflanzen 175:91–103
    [Google Scholar]
  48. Tel-Or E., Spath S., Packer L., Mehlhorn R. J. 1986; Carbon-13 NMR studies of salt-induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum. Plant Physiology 82:646–652
    [Google Scholar]
  49. Trüper H. G., Galinski E. A. 1989 Compatible solutes in halophilic phototrophic prokaryotes. In Microbial Mats, Physiological Ecology of Benthic Microbial Communities, pp. 342–348 Edited by Cohan Y., Rosenberg E. Washington DC: American Society for Microbiology;
    [Google Scholar]
  50. Vonshak A., Guy R., Guy M. 1988; The response of the filamentous cyanobacterium Spirulinaplatensis to salt stress. Archives of Microbiology 150:417–420
    [Google Scholar]
  51. Warr S. R. C, Reed R. H., Chudek J. A., Foster R., Stewart W. D. P. 1985; Osmotic adjustment in Spirulina platensis. Planta 163:424–429
    [Google Scholar]
  52. Waterbury J. B., Watson S. W., Valois F. W., Franks D. G. 1986; Biological and ecological characterization of the marine unicellular cyanobacteria Synechococcus. Canadian Bulletin of Fisheries and Aquatic Sciences 214:71–120
    [Google Scholar]
/content/journal/micro/10.1099/00221287-138-2-363
Loading
/content/journal/micro/10.1099/00221287-138-2-363
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error