1887

Abstract

SUMMARY: A periodicity in nitrogen fixation potential with respect to the light-dark regime was studied in the filamentous non-heterocystous cyanobacterium sp. NIBB 1067. During a 12 h light/12 h dark cycle, potential nitrogenase activity measured by acetylene reduction in the light was insignificant in the dark period, but developed after illumination for 1 to 3 h. Maximum nitrogenase activity was found at the middle of the light period, and activity decreased near the end of the light period. Manipulation of the length of the light and dark periods, and use of the glutamine synthetase inhibitor L-methionine sulphoximine, led to the conclusion that (1) the periodicity in activity was not attributable to an endogenous rhythm, (2) development and maintenance of nitrogenase activity in was regulated by the light period, and (3) the decrease in activity at the end of the light period was due to the accumulation of an intermediate(s) in nitrogen metabolism. The nitrogenase Fe- and MoFe-proteins were always present despite the changes in nitrogenase activity associated with the light-dark cycle. However, a change in apparent molecular mass of the Fe-protein on SDS-PAGE correlated with the change in nitrogenase activity. The results indicate that changes of nitrogenase activity in under a light-dark regime can be attributed to activation and deactivation of the Fe-protein, and that the activation of the protein depends on light.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-12-2679
1992-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/12/mic-138-12-2679.html?itemId=/content/journal/micro/10.1099/00221287-138-12-2679&mimeType=html&fmt=ahah

References

  1. Bergman B. & Carpenter E. J. ( 1991;). Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. . Journal of Phycology 27, 158-165.
    [Google Scholar]
  2. Bergman B., Lindblad P. & Rai A. N. ( 1986;). Nitrogenase in freeliving and symbiotic cyanobacteria: immunoelectron microscopic localization.. FEMS Microbiology Letters 35, 75-78.
    [Google Scholar]
  3. Capone D. G., O'Neil J.M., Zehr J. & Carpenter E. J. ( 1990;). Basis for die) variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautii.. Applied and Environmental Microbiology 56, 3532-3536.
    [Google Scholar]
  4. Ernst A., Liu Y.-D., Reich S. & Böger P. ( 1990;). Diurnal nitrogenase modification in the cyanobacterium. Anabaena variabilis. Botanica Acta 103, 183-189.
    [Google Scholar]
  5. Fay P. ( 1973;). Heterocysts. . In The Biology of Blue-green Algae, pp. 238-259. Edited by Carr N. G. & Whitton B. A.. Oxford:: Blackwell Scientific Publications;.
    [Google Scholar]
  6. Gallon J. R. & Chaplin A. E. ( 1988;). Nitrogen fixation. . In Bio- chemistry of the Algae and Cyanobacteria, pp. 147-173. Oxford:: Clarendon Press;.
    [Google Scholar]
  7. Gotto J. W. & Yoch D. C. ( 1982;). Regulation of Rhodospirillum rubrum nitrogenase activity. Properties and interconversion of active and inactive Fe protein. . Journal of Biological Chemistry 257, 2868-2873.
    [Google Scholar]
  8. Huang T.-C., Tu J., Chow T.-J. & Chen T.-S. ( 1990;). Circadian rhythm of the prokaryote Synechococcus sp. RF-I. . Plant Physiology 92, 531-533.
    [Google Scholar]
  9. Khamees H. S., Gallon J. R. & Chaplin A. E. ( 1987;). The pattern of acetylene reduction by cyanobacteria grown under alternating light and darkness.. British Phycological Journal 22, 55-60.
    [Google Scholar]
  10. Ludden P. W. & Roberts G. P. ( 1989;). Regulation of nitrogenase activity by reversible ADP ribosylation.. Current Topics in Cellular Regulation 30, 23-56.
    [Google Scholar]
  11. Mackinney G. ( 1941;). Absorption of light by chlorophyll solution.. Journal of Biological Chemistry 140, 315-322.
    [Google Scholar]
  12. Mitsui A., Kumazawa S., Takahashi A., Ikemoto H., Cao S. & Arai T. ( 1986;). Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically.. Nature, London 323, 720-722.
    [Google Scholar]
  13. Morel F. M. M., Rueter J. G., Anderson D. M. & Guillard R. R. ( 1979;). Aquil: a chemically defined phytoplankton culture medium for trace metal studies.. Journal of Phycology 15, 135-141.
    [Google Scholar]
  14. Mullineaux P. M., Gallon J. R. & Chaplin A. E. ( 1981;). Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles.. FEMS Microbiology Letters 10, 245-247.
    [Google Scholar]
  15. Ohki K. & Fujita Y. ( 1988;). Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. . Marine Biology 98, 111-114.
    [Google Scholar]
  16. Ohki K., Rueter J. G. & Fujita Y. ( 1986;). Cultures of the pelagic cyanophytes Trichodesmium erythraeum and T. thiebautii in synthetic medium. . Marine Biology 91, 9-13.
    [Google Scholar]
  17. Ohki K., Falkowski P. G., Rueter J. G. & Fujita Y. ( 1991a;). Experimental study of the marine cyanophyte. Trichodesmium sp., a nitrogen-fixing phytoplankton in tropical and subtropical sea area. In Marine Biology, Its Accomplishment and Future Prospect, pp. 205-216. Edited by Mauchline J. & Nemoto T.. Tokyo:: Hokusensha;.
    [Google Scholar]
  18. Ohki K., Zehr J. P., Falkowski P. G. & Fujita E. ( 1991b;). Regulation of nitrogen-fixation by different nitrogen sources in the marine non-heterocystous cyanobacterium Trichodesmium sp. NIBB 1067. . Archives of Microbiology 156, 335-337.
    [Google Scholar]
  19. Ohki K., Zehr J. P. & Fujita Y. ( 1992;). Trichodesmium: establishment of culture and characteristics of N2-fixation. . In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, pp. 307-318. Edited by Carpenter E. J., Capone D. G. & Rueter J. G.. Dordrecht:: Kluwer Academic Publishers;.
    [Google Scholar]
  20. Paerl H. W., Bebout B. M. & Prufert L. E. ( 1989;). Bacterial associations with marine. Oscillatoria sp. ( Trichodesmium sp.) populations: ecophysiological implications. Journal of Phycology 25, 773-784.
    [Google Scholar]
  21. Preston G. G. & Ludden P. W. ( 1982;). Change in subunit composition of the iron protein of nitrogenase from Rhodospirillum rubrum during activation and inactivation of iron protein. . Biochemical Journal 205, 489-494.
    [Google Scholar]
  22. Reich S. & Böger P. ( 1989;). Regulation of nitrogenase activity in Anabaena variabilis by modification of the Fe-protein. . FEMS Microbiology Letters 58, 81-86.
    [Google Scholar]
  23. Rippka R. & Waterbury J.B. ( 1977;). The synthesis of nitrogenase by non-heterocystous cyanobacteria.. FEMS Microbiology Letters 2, 83-86.
    [Google Scholar]
  24. Rippka R., Deruelles J., Waterbury J. B., Herdman M. & Stanier R. Y. ( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria.. Journal of General Microbiology 111, 1-6 l.
    [Google Scholar]
  25. Saino T. & Hattori A. ( 1978;). Diel variation in nitrogen fixation by a marine blue-green alga. , Trichodesmium thiebautii. Deep Sea Research 25, 1259-1263.
    [Google Scholar]
  26. Smith R. L., Van Baalen C. & Tabita F. R. ( 1987;). Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacterium. Anabaena sp. strain CA. Journal of Bacteriology 169, 2537-2543.
    [Google Scholar]
  27. Stal L. J. & Krumbein W. E. ( 1985;). Nitrogenase activity in the nonheterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. . Archives of Microbiology 143, 67-71.
    [Google Scholar]
  28. Stewart W. D. P. & Rowell P. ( 1975;). Effects of L-methionine-DL-sulfoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. . Biochemical and Biophysical Research Communications 65, 846-856.
    [Google Scholar]
  29. Van Baalen C. ( 1987;). Nitrogen fixation. . In Cyanobacteria, pp.187-198. Edited by Fay P. & Van Baalen C.. Amsterdam:: Elsevier;.
    [Google Scholar]
  30. Zehr J. P., Limberger R. J., Ohki K. & Fujita Y. ( 1990;). Antiserum to nitrogenase generated from an amplified DNA fragment from natural populations of Trichodesmium spp. . Applied and Environmental Microbiology 56, 3527-3531.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-12-2679
Loading
/content/journal/micro/10.1099/00221287-138-12-2679
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error