1887

Abstract

SUMMARY: The effects of different gaseous regimes on the growth rate and extracellular enzyme location of colonies of and are reported. The two species showed similar growth, extracellular enzyme and pH responses to gaseous composition (N, O and CO), but the responses of differed. Whilst maximum extension rates were obtained for all species under atmospheric gaseous composition, maximum biomass production occurred at 5% (v/v) O with 20% (v/v) CO for the species and at 5% O with 60% CO for . The species had a coenocytic margin (5–6 mm width) under atmospheric conditions, which increased in width with increasing percentage of CO. Laccase and peroxidase activity were present throughout the septate region, but not in the coenocytic zone. With laccase and peroxidase activities appeared throughout the colony, but were more intense in the peripheral region, under all gaseous regimes. A laser densitometer, normally used to visualize proteins on electrophoresis strips, was used to estimate profiles of biomass and laccase-α-naphthol activity within colonies. Surface pH changed little in colonies of but dropped by over 1 pH unit from the margin inwards with the species. The significance of these results is discussed in terms of ecological strategy and developmental versatility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-12-2589
1992-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/12/mic-138-12-2589.html?itemId=/content/journal/micro/10.1099/00221287-138-12-2589&mimeType=html&fmt=ahah

References

  1. Boddy L. & Rayner A. D. M. ( 1983a;). Mycelial interactions, morphogenesis and ecology of Phlebia radiata and Phlebia rufa from oak. . Transactions of the British Mycological Society 80, 437-448.
    [Google Scholar]
  2. Boddy L. & Rayner A. D. M. ( l983b;). Ecological roles of basidomycetes forming decay communities in attached oak branches.. New Phytologist 93, l 77-188.
    [Google Scholar]
  3. Boidin J. ( 1951;). Recherche de la tyrosinase et laccase chez les basidiomycetes en culture pure.. Revue de Mycologie 16, 173-197.
    [Google Scholar]
  4. Boisson C. ( 1968;). Mise en evidence de deux phases myceliennes successives au cours du developpement du Leptoporus lignosus (Kl.) Heim. . Comptes Rendus de l'Academie des Sciences, Serie D 266, 112-115.
    [Google Scholar]
  5. Bollag J.-M. & Leonowicz A. ( 1984;). Comparative studies of extracellular laccases.. Applied and Environmental Microbiology 48, 849-854.
    [Google Scholar]
  6. Carrodus B. B. & Triffeit A. C. K. ( 1975;). Analysis of composition of respiratory gases in woody stems by mass spectrometry.. New Phytologist 74, 243-246.
    [Google Scholar]
  7. Devi C. C., Tripathi R. K. & Ramaiah A. ( 1989;). pH-dependent interconvertible forms of mushroom tyrosinase with different kinetic properties.. Pigment Cell Research 2, 8-13.
    [Google Scholar]
  8. Dodson P. J., Evans C. S., Harvey P. J. & Palmer J. M. ( 1987;). Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Ca-Cp cleavage in a lignin model compound. . FEMS Microbiology Letters 42, 17-22.
    [Google Scholar]
  9. Esser K. ( 1984;). Senescence in Podospora anserina and its implication for genetic engineering. . In The Ecology and Physiology of the Fungal Mycelium, pp. 343-352. Edited by Jennings D. H. & Rayner A. D. M.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  10. Evans C. S., Gallagher I. M., Atkey P. T. & Wood D. A. ( 1991;). Localization of degradative enzymes in white-rot decay of lignocellulose.. Biodegradation 2, 93-106.
    [Google Scholar]
  11. Geiger J.P., Nandris D. &Goujon. , M. ( 1976;). Activité des laccases et des peroxidases au sein de vacines d'Hévéa attaquees par le pourridié blanc (Leptoporus lignosus (K1.) Heim).. Physiologie Vegetale 14, 271-282.
    [Google Scholar]
  12. Glenn J. K. & Gold M. H. ( 1985;). Purification and characterization of an extracellular Mn(II}-dependent peroxidase from the lignindegrading basidiomycete Phanerochaete chrysosporium.. Archives of Biochemistry and Biophysics 242, 329-341.
    [Google Scholar]
  13. Gregory P.H. ( 1984;). The fungal mycelium: an historical perspective.. Transactions of the British Mycological Society 82, 1-11.
    [Google Scholar]
  14. Gunderson K. ( 1961;). Growth of Fornes annosus under reduced oxygen pressure and the effect of carbon dioxide. . Nature, London 190, 649.
    [Google Scholar]
  15. Harkin J. M. & O T J. R. ( 1973;). Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi.. Experientia 29, 381-387.
    [Google Scholar]
  16. Hatakka A. & Tervila-Wilo A. ( 1986;). Ligninases of white-rot fungi. . In Proceedings of Soviet and Finnish Seminar on Microbial Degradation of Lignocellulose. Raw Materials, 1985 (Tbilisi, Georgia, USSR), pp. 65-74. Pushchino, USSR:: USSR Academy of Sciences;.
    [Google Scholar]
  17. Hatakka A. I. & Uusi-Rauva A. K. ( 1983;). Degradation of 14 C-labelled poplar wood lignin by selected white-rot fungi.. European Journal of Applied Microbial Biotechnology 17, 235-242.
    [Google Scholar]
  18. Hedlund K., Boddy L. & Preston C. M. ( 1991;). Mycelial responses of the soil fungus Mortierella isabellina to grazing by Onychiurus armatus (Collembola). . Journal of Soil Biology and Biochemistry 23, 361-366..
    [Google Scholar]
  19. Hintikka V. & Korhonen K. ( 1970;). Effects of carbon dioxide on the growth of lignicolous and soil-inhabiting Hymenomycetes.. Communicationes lnstituti Forestalis Fenniae 62, 1-22.
    [Google Scholar]
  20. Hiorth J. ( 1965;). The phenoloxidase and peroxidase activities of two culture types of Phellinus tremulae (Bond.) Bond. & Boriss. . Meddeleser Norske Skoforsoksvesen 20, 249-272.
    [Google Scholar]
  21. Jennings D. H. ( 1988;). Inorganic nutrition. . In Physiology of Industrial Fungi, pp. 77-96. Edited by Berry D. R.. Oxford:: Blackwell Scientific Publications;.
    [Google Scholar]
  22. Jonsson L., Johansson T., Sjostrom K. & Nyman P. O. ( 1987;). Purification of ligninase isozymes from white-rot fungus Trametes versicolor. . Acta Chemica Scandinavica 841, 766-769.
    [Google Scholar]
  23. Kaarik A. ( 1965;). The identification of the mycelia of wood-decay fungi by their oxidation reactions with phenolic compounds.. Studia Forestalia Suecica 31.
    [Google Scholar]
  24. Kantelinen A., Hatakka A. & Viikari L. ( 1989;). Production of lignin peroxidase and laccase by Phlebia radiata. . Applied Microbiology and Biotechnology 31, 234-239.
    [Google Scholar]
  25. Katayama Y., Nishida T., Morohoshi N. & Kuroda K. ( 1989;). The metabolism of biphenyl structures in lignin by the wood-rotting fungus Coriolus versicolor. . FEMS Microbiology Letters 61, 307-314.
    [Google Scholar]
  26. Kirk T. K. & Farrell R. L. ( 1987;). Enzymatic ‘combustion’: the microbial degradation of lignin. . Annual Review of Microbiology 41, 465-505.
    [Google Scholar]
  27. Kirkpatrick N. & Palmer J.M. ( 1989;). A natural inhibitoroflignin peroxidase activity from Phanerochaete chrysosporium, active at low pH and inactivated by divalent metal ions. . Applied Microbiology and Biotechnology 30, 305-311.
    [Google Scholar]
  28. Koenigs J. W. ( 1974;). Hydrogen peroxide and iron : a proposed system for decomposition of wood by brown-rot basidiomycetes.. Wood Fiber 6, 66-79.
    [Google Scholar]
  29. Leatham G. F. & Stahmann M.A. ( 1981;). Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. . Journal of General Microbiology 125, 147-157.
    [Google Scholar]
  30. Levine W. A. ( 1965;). Laccase, a review. . In The Biochemistry of Copper, pp. 371-387. Edited by Peisach J., Aisen P. & Blumberg W. E.. New York:: Academic Press;.
    [Google Scholar]
  31. Long T. J. & Alben J. O. ( 1978;). Preliminary studies of mushroom tyrosinase.. Mushroom Science 1, 69-79.
    [Google Scholar]
  32. Lundquist K. & Kristerss0N P. ( 1985;). Exhaustive laccasecatalysed oxidation of a lignin model compound (vanillyl glycol) produces methanol and polymeric quinoid products.. Biochemical Journal 229, 277-279.
    [Google Scholar]
  33. Mayer A. M. & Harel E. ( 1979;). Polypheno] oxidases in plants.. Phytochemistry 18, 193-215.
    [Google Scholar]
  34. Metzler D. E. ( 1977). Biochemistry, pp. 571-637. Ames:: Iowa State University Press;.
    [Google Scholar]
  35. Molitoris H. P. ( 1978;). Wood degradation, phenoloxidases and chemotaxonomy of higher fungi.. Mushroom Science 10, 243-263.
    [Google Scholar]
  36. Morohoshi N., Nakamura M., Katayama Y., Haraguchi T., Furn T. & Hiroi T. ( 1989;). Degradation of protolignin by laccase III.. International Biodeterioration 25, 7-14.
    [Google Scholar]
  37. Morpeth F. F. & Jones G. D. ( 1986;). Resolution, purification and some properties of the multiple forms of cellobiose quinone dehydrogenase from the white-rot fungus. Phanerochaete chrysosporium. Biochemical Journal 236, 221-226.
    [Google Scholar]
  38. Moss M. O. ( 1984;). The mycelial habit and secondary metabolite production. . In The Ecology and Physiology of the Fungal Mycelium, pp. 127-142. Edited by Jennings D. H. & Rayner A. D. M.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  39. Niemela T. ( 1977;). The effect of temperature on two culture types of Phellinus tremulae (Fungi, Hymenochaetaceae). . Annales Botanici Fennici 14, 21-24.
    [Google Scholar]
  40. Niku-Paavola M.-J., Karhunen E., Salola P. & Raunio V. ( 1988;). Ligninolytic enzymes of the white-rot fungus. Phlebia radiata. Biochemical Journal 254, 877-884.
    [Google Scholar]
  41. Nobles N. K. ( 1965;). Identification of cultures of wood-inhabiting hymenomycetes.. Canadian Journal of Botany 43, 1097-1139.
    [Google Scholar]
  42. Paterson A. ( 1988;). Fungal enzymes. . In Physiology of Industrial Fungi, pp. 101-129. Edited by Berry D. R.. Oxford:: Blackwell Scientific Publications;.
    [Google Scholar]
  43. Poppe J. & Welvaert W. ( 1983;). Identification of Hymenomycetes in pure-culture by characterization of their mycelia and trials for artificial fructification.. Mededelingen van de Faculteit Ladbouwwetenschappen Rijksuniversiteit Gent 48, 901-912.
    [Google Scholar]
  44. Prillinger H. J. & Molitoris H. P. ( 1981;). Praktische Bedeutung von Enzymspektren bei Pitzen.. Der Champignon 233, 28-34.
    [Google Scholar]
  45. Rayner A. D. M. & Coates D. ( 1987;). Regulation of mycelial organization and responses. . In Evolutionary Biology of the Fungi, pp. 115-136. Edited by Rayner A. D. M., Brasier C. M. & Moore D.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  46. Rayner A. D. M., Boddy L. & Dowson C. G. ( 1987;). Genetic interactions and developmental versatility during establishment of decomposer basidomycetes in wood and tree litter. . In Ecology of Microbial Communities, pp. 83-123. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  47. Schanel L. ( 1976;). Role of carbon dioxide in growth and decaying activity of wood-rotting fungi.. Folia Facultatis Scientarium Natura- /ium Universitatis Purkyninae Brunensis 54, 5-53.
    [Google Scholar]
  48. Sharland P.R., Burton J. L. & Rayner A. D. M. ( 1986;). Mycelial dimorphism, interactions and pseudosclerotial plate formation in Hymenochaete corrugata. . Transactions of the British Mycologica/Society 86, 158-163.
    [Google Scholar]
  49. Stalpers J. A. ( 1978;). Identification of wood-inhabiting fungi in pure culture.. Studies in Mycology 16, 1-248.
    [Google Scholar]
  50. Tabak H. H. & Cooke B. ( 1968;). The effects of gaseous environments on the growth and metabolism of fungi.. Botanical Review 34, 126-252.
    [Google Scholar]
  51. Thompson W. & Rayner A. D. M. ( 1982;). Structure and development of mycelial cord systems of Phanerochaete laevis in soil. . Transactions of the British Mycologica/Society 18, 193-200.
    [Google Scholar]
  52. Vermousek I. & Schanel L. ( 1973;). White-rot fungus Pleurotus ostreatus as a new source of peroxidase and glucose oxidase. . Ninth International Congress of Biochemistry 41, 6–8.
    [Google Scholar]
  53. Wells J. & Boddy L. ( 1990;). Wood decay, and phosphorus and fungal biomass allocation, in mycelial cord systems.. New Phytologist 116, 285-295.
    [Google Scholar]
  54. Wessels J. G. H. ( 1991;). Fungal growth and development: a molecular perspective. . In Frontiers in Mycology. Honorary and General Lectures from the Fourth International Mycological Congress, Regensberg 1990, pp. 27-48. Edited by Hawksworth D. L.. Wallingford:: CAB International Press;.
    [Google Scholar]
  55. White N. A. ( 1992). Biotechnological implications of the ecology and developmental biology of selected higher fungi. PhD thesis, University of Wales College of Cardiff;.
    [Google Scholar]
  56. Wood D. A., Perry C., Thurston C. F., Matcham S. E., Dudley K., Clayoon N. & Allan M. ( 1990;). Molecular analysis of lignocellulolytic enzymes of the edible mushroom. Agaricus bisporus. In Biotechnology in Pulp and Paper Manufacture, pp. 659-666. Edited by Kirk T. K. & Chang H.-M.. Stoneham, MA:: ButterworthHeinemann;.
    [Google Scholar]
  57. Wosten H. A. B., Moukha S. M. & Wessels J. G. H. ( 1990;). Localization of protein secretion in filamentous fungi.. Fourth International Mycological Congress (Abstracts), Regensberg, Germany B, 101.
    [Google Scholar]
  58. Westermark U. & Eriksson K. E. ( 1974;). Cellobiose :quinone oxidoreductase, a new wood degrading enzyme from white-rot fungi.. Acta Chemica Scandinavica B28, 209-214.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-12-2589
Loading
/content/journal/micro/10.1099/00221287-138-12-2589
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error