1887

Abstract

SUMMARY: Incubation of with the plant cytokinin -(Δ-isopentenyl)adenine (2iP) resulted in an induction of thermotolerance similar to that induced by sublethal temperatures. Intracellular cAMP levels did not change significantly either during incubation at a sublethal temperature or in the presence of 2iP or ethanol. This suggested that stress-induced thermotolerance is triggered by a mechanism independent of cAMP activation. However, measurement of stress-induced thermotolerance in two mutant strains () each deficient in two of the catalytic subunits of the cAMP-dependent protein kinase (cAPK), revealed that sublethal heat induces thermotolerance by a mechanism part-mediated by the catalytic subunits of cAPK. In contrast, 2iP and ethanol induced thermotolerance by a mechanism fully dependent on the catalytic subunits of cAPK for expression. Therefore, this implies there must be an alternative novel mechanism, other than cAMP, for activating cAPK during stress. Sublethal heating resulted in large increases in intracellular trehalose levels which correlated with the induction of thermotolerance. However, incubation in 2iP or ethanol had no significant effect. This suggests trehalose synthesis is either coincidental with heat stress or that different stress factors induce thermotolerance by alternative mechanisms. Incubation with protein synthesis inhibitors reduced the levels of trehalose synthesized during sublethal heating, suggesting that synthesis of trehalose-6-phosphate synthase during heat stress could be accounting for the increased trehalose levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-12-2551
1992-12-01
2021-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/12/mic-138-12-2551.html?itemId=/content/journal/micro/10.1099/00221287-138-12-2551&mimeType=html&fmt=ahah

References

  1. Atifield P. V. ( 1986;). Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. . FEBS Letters 225, 259-263.
    [Google Scholar]
  2. Beebe S. J. & Corbin J. D. ( 1986). Cyclic nucleotide-dependent protein kinases. . In The Enzymes, vol. 17, pp. 43-111. Edited by Boyer P. D.. New York:: Academic Press;.
    [Google Scholar]
  3. Cameron S., Levin L., Zoller M. & Wigler M. ( 1988;). cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. . Cell 53, 555-566.
    [Google Scholar]
  4. Camonis J. H., Kalekine M., Gondre B., Garreau H., Boy-Marcotie E. & Jacquet M. ( 1986;). Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. . EMBO Journal 5, 375-380.
    [Google Scholar]
  5. Cannon J. F. & Tatchell K. ( 1987;). Characterisation of Saccharo-myces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. . Molecular and Cellular Biology 1, 2653-2663.
    [Google Scholar]
  6. Coote P. J., Cole M. B. & Jones M. V. ( 1991a;). Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. . Journal of General Microbiology 137, 1701-1708.
    [Google Scholar]
  7. Coote P. J., Cole M. B. & Holyoak C. ( 1991b;). Thermal inactivation of Listeria monocytogenes during a process simulating temperatures achieved during microwave heating. . Journal of Applied Bacteriology 70, 489-494.
    [Google Scholar]
  8. Coppola S., Zoina A. & Marino P. ( 1976;). Interactions of N6-(ti 2 isopentenyl)adenine with cyclic AMP on the regulation of growth and p-galactosidase synthesis in Escherichia coli.. Journal of General Microbiology 94, 436-438.
    [Google Scholar]
  9. Crowe J. H., Crowe L. M., Carpenter J. F. & Wistrom C. A. ( 1987;). Stabilisation of dry phospholipid bilayers and proteins by sugars.. Biochemical Journal 242, 1-10.
    [Google Scholar]
  10. De Virgilio C., Burckert N., Boller T. & Wiemken A. ( 1991;). A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast.. FEBS Letters 291, 355-358.
    [Google Scholar]
  11. Hecht S. M., Faulkner R. D. & Hawrelak S. D. ( 1974;). Competitive inhibition of beef heart cyclic AMP phosphodiesterase by cytokinins and related compounds.. Proceedings of the National Academy of Sciences of the United States of America 71, 4670-4674.
    [Google Scholar]
  12. Hotiiger T., Boller T. & Wiemken A. ( 1987a;). Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. . FEBS 'Letters 220, 113-115.
    [Google Scholar]
  13. Hotiiger T., Schmutz P. & Wiemken A. ( 1987b;). Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. . Journal of Bacteriology 169, 5518-5522.
    [Google Scholar]
  14. Hotiiger T., Boller T. & Wiemken A. ( 1989;). Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant?. FEBS Letters 255, 431-434.
    [Google Scholar]
  15. Krebs E.G. & Beavo J. A. ( 1979;). Phosphorylation-dephosphorylation of enzymes.. Annual Review of Biochemistry 48, 923-959.
    [Google Scholar]
  16. Lillie S. H. & Pringle J. R. ( 1980;). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. . Journal of Bacteriology 143, 1384-1394.
    [Google Scholar]
  17. Matsumoto K., Uno I., Oshima Y. & Ishikawa T. ( 1982;). Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase.. Proceedings of the National Academy of Sciences of the United States of America 79, 2355-2359.
    [Google Scholar]
  18. Matsumoto K., Uno I. & Ishikawa T. ( 1983;). Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. . Experimental Cell Research 146, 151-161.
    [Google Scholar]
  19. Mazon M. J., Gancedo J. M. & Gancedo C. ( 1982;). Phosphorylation and inactivation of yeast fructose-1,6-biphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP. . European Journal of Biochemistry 127, 605-608.
    [Google Scholar]
  20. Panaretou B. & Piper P. W. ( 1990;). Plasma-membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizosaccharomyces pombe as well as the extent and duration of the heat shock response. . Journal of General Microbiology 136, 1763-1770.
    [Google Scholar]
  21. Panek A. C., De Araujo P. S., Neto V. M. & Panek A. D. ( 1987;). Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces. . Current Genetics 11, 459-465.
    [Google Scholar]
  22. Piper P. ( 1990;). Interdependence of several heat shock gene activations, cyclic AMP decline and changes at the plasma membrane of Saccharomyces cerevisiae. . Antonie van Leeuwenhoek 58, 195-201.
    [Google Scholar]
  23. Plesset J., Ludwig J. R., Cox B. S. & Mclaughlin C. S. ( 1987;). Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. . Journal of Bacteriology 169, 779-784.
    [Google Scholar]
  24. Praekelt U. M. & Meacock P. A. ( 1990;). HSPJ2, a new heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. . Molecular and General Genetics 223, 97-106.
    [Google Scholar]
  25. Sanchez Y. & Lindquist S. L. ( 1990;). HSP104 required for induced thermotolerance.. Science 248, 1112-1115.
    [Google Scholar]
  26. Shin D., Matsumoto K., Iida H., Uno I. & Ishikawa T. ( 1987;). Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. . Molecular and Cellular Biology 1, 244-250.
    [Google Scholar]
  27. Thevelein J. M. ( 1984a;). Activation of trehalase by heat shock in yeast ascospores: correlation with total cellular cyclic-AMP content.. Current Microbiology 10, 159-164.
    [Google Scholar]
  28. Thevelein J. M. ( 1984b;). Regulation of trehalose mobilization in fungi.. Microbiological Reviews 48, 42-59.
    [Google Scholar]
  29. Thevelein J. M. ( 1988;). Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi.. Experimental Mycology 12, 1-12.
    [Google Scholar]
  30. Thevelein J. M. ( 1991;). Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control.. Molecular Microbiology 5, 1301-1307.
    [Google Scholar]
  31. Thevelein J. M. & Beullens M. ( 1985;). Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. . Journal of General Microbiology 131, 3199-3209.
    [Google Scholar]
  32. Thevelein J. M., Beullens M., Honshoven F., Hoebeeck G., Detremerie K., Den Hollander J. A. & Jans W. W. H. ( 1987;). Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds. . Journal of General Microbiology 133, 2191-2196.
    [Google Scholar]
  33. Toda T., Cameron S., Sass P., Zoller M., Scorr J. D., Mcmullen B., Hurwitz M., Krebs E.G. & Wigler M. ( 1987a;). Cloning and characterization of BCYJ, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. . Molecular and Cellular Biology 1, 1371-1377.
    [Google Scholar]
  34. Toda T., Cameron S., Sass P., Zoller M. & Wigler M. ( 1987b;). Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. . Cell 50, 277-287.
    [Google Scholar]
  35. Valle E., Bergillos L., Gascon S., Parra F. & Ramos S. ( 1986;). Trehalase activation in yeasts is mediated by an internal acidification.. European Journal of Biochemistry 154, 247-251.
    [Google Scholar]
  36. Van Der Plaat J. B. ( 1974;). Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker's yeast.. Biochemical and Biophysical Research Communications 56, 580-587.
    [Google Scholar]
  37. Watson K., Dunlop G. & Cavicchioli R. ( 1984;). Mitochondrial and cytoplasmic protein synthesis are not required for heat shock acquisition of ethanol and thermotolerance in yeast.. FEBS Letters 172, 299-302.
    [Google Scholar]
  38. Wiemken A. ( 1990;). Trehalose in yeast, stress protectant rather than reserve carbohydrate.. Antonie van Leeuwenhoek 58, 209-217.
    [Google Scholar]
  39. Wiemken A. & Schellenberg M. ( 1982;). Does a cyclic-AMP dependent phosphorylation initiate the transfer of trehalase from the cytosol into the vacuoles in Saccharomyces cerevisiae?. FEBS Letters 150, 329-331.
    [Google Scholar]
  40. Yagasaki K., Shinonaga M. & Funabiki R. ( 1986;). Effect of isopentenyladenine, a cytokinin, on proliferation and protein synthesis in cultured myoblasts.. Agricultural and Biological Chemistry 50, 2791-2794.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-12-2551
Loading
/content/journal/micro/10.1099/00221287-138-12-2551
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error