1887

Abstract

SUMMARY: The Ti-plasmid-encoded two-component sensor-regulator system comprising VirA and VirG confers upon the ability to respond chemotactically to nanomolar concentrations of -inducing phenolics such as acetosyringone. Non-phosphorylatable, mutant VirA and VirG proteins are incapable of replacing their wild-type counterparts in conferring this phenotype. This indicates that, like -gene induction in response to acetosyringone, chemotaxis to the same ligand involves phosphorylation of VirA and VirG. However, unlike -induction, deletion of the periplasmic domain of VirA severely curtails acetosyringone chemotaxis, suggesting that acetosyringone may mediate effects through more than one region of VirA. When introduced into strains expressing wild-type VirA and VirG, the non-phosphorylatable versions suppress chemotaxis towards acetosyringone, implying that mutant copies of VirA and VirG compete with their wild-type counterparts in interactions between VirA and VirG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-12-2509
1992-12-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/12/mic-138-12-2509.html?itemId=/content/journal/micro/10.1099/00221287-138-12-2509&mimeType=html&fmt=ahah

References

  1. Adler J. ( 1973;). A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. . Journal of General Microbiology 74, 77-91.
    [Google Scholar]
  2. Ankenbauer R. G., Best E. A., Palanca C. A. & Nester E. W. ( 1991;). Mutants of the Agrobacterium tumefaciens virA gene exhibit· ing acetosyringone-independent expression of the vir regulon. . Molecular Plant-Microbe Interactions 4, 400-406.
    [Google Scholar]
  3. A0Yama T., Takanami M., Makino K. & Oka A. ( 1991;). Cross-talk between the virulence and phosphate regulons of Agrobacterium tumefaciens caused by an unusual interaction of the transcriptional activator with a regulatory DNA element. . Molecular and General Genetics 227, 385-390.
    [Google Scholar]
  4. Armitage J. P., Josey D. P. & Smith D. G. ( 1977;). A simple qualitative method for measuring chemotaxis and motility in bacteria.. Journal of General Microbiology 102, 199-202.
    [Google Scholar]
  5. Ashby A. M., Watson M. D. & Shaw C. H. ( 1987;). A Ti-plasmid determined function is responsible for chemotaxis of Agrobacterium tumefaciens towards the plant wound product acetosyringone. . FEMS Microbiology Letters 41, 189-192.
    [Google Scholar]
  6. Ashby A. M., Watson M. O. , L0Ake G. J. & Shaw C. H. ( 1988;). Ti-plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C I toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. . Journal of Bacteriology 170, 4181-4187.
    [Google Scholar]
  7. Bernaerts M. J. & De Ley J. ( 1963;). A biochemical test for Crown Gall.. Nature, London 197, 406-407.
    [Google Scholar]
  8. Cangelosi G. A., Ankenbauer R. G. & Nester E. W. ( 1990;). Sugars induce the Agrobacterium tumefaciens virulence genes via a periplasmic binding protein and the virA protein. . Proceedings of the National Academy of Sciences of the United States of America 87, 6708-6712.
    [Google Scholar]
  9. Hawes M. C. & Smith L. Y. ( 1989;). Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil grown pea plants. . Journal of Bacteriology 171, 5668-5671.
    [Google Scholar]
  10. Hawes M. C., Smith L. Y. & Howarth A. J. ( 1988;). Agrobacterium tumefaciens mutants deficient in chemotaxis to root exudates. . Molecular Plant-Microbe Interactions 1, 182-186.
    [Google Scholar]
  11. Hazelbauer G. L., Yaghmai R., Burrows G. G., Baumgartner J. W., Dutton D. P. & Morgan D. G. ( 1990). Transducers: transmembrane receptor proteins involved in bacterial chemotaxis. . In Biology of the Chemotactic Response pp. 107-134. Edited by Armitage J. P. & Lackie J. M.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  12. Howard E. & Citovsky V. . ( 1990;). The emerging structure of the Agrobacterium T-DNA transfer complex. . BioEssays 12, 103-108.
    [Google Scholar]
  13. Huang M. L. W., Cangelosi G. A., Halperin W. & Nester E. W. ( 1990a;). A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. . Journal of Bacteriology 172, 1814-1822.
    [Google Scholar]
  14. Huang Y., Morel P., Powell B. & Kado C. I. ( 1990b;). virA, a coregulator of Ti-specified virulence genes is phosphorylated in vitro. . Journal of Bacteriology 172, 1142-1144.
    [Google Scholar]
  15. Jin S., Prusti R. K., Roitsch T., Ankenbauer R. G. & Nester E. W. ( 1990a;). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. . Journal of Bacteriology 172, 4945-4950.
    [Google Scholar]
  16. Jin S., Roitsch T., Ankenbauer R. G., Gordon M. P. & Nester E. W. ( 1990b;). The virA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. . Journal of Bacteriology 172, 525-530.
    [Google Scholar]
  17. Jin S., Roitsch T., Christie P. J. & Nester E. W. ( 1990;c). The regulatory virG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. . Journal of Bacteriology 172, 531-537.
    [Google Scholar]
  18. Knauf V. C. & Nester E. W. ( 1982;). Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti-plasmid. . Plasmid 8, 45-54.
    [Google Scholar]
  19. Leemans J., Shaw C. H., Deblaere R., De Greve H., Hernalsteens J. -P., Van Montagu M. &Schell. , J. ( 1981;). Site-specific mutagenesis of Agrobacterium Ti-plasmids and transfer of genes to plant cells. . Journal of Molecular and Applied Genetics 1, 149-164.
    [Google Scholar]
  20. Loake G. J., Ashby A. M. & Shaw C. H. ( 1988;). Attraction of Agrobacterium tumefaciens C58Cl towards sugars involves a highly sensitive chemotaxis system. . Journal of General Microbiology 134, 1427-1432.
    [Google Scholar]
  21. Melchers L. S., Regensburg-Tuink T. J. G., Bourret R. B., Sedee N. J. A., Schilperoort R. A. & Hooykaas P. J. J. ( 1989;). Membrane topology and functional analysis of the sensory protein virA of Agrobacterium tumefaciens. . EMBO Journal 8, 1919-1925.
    [Google Scholar]
  22. Miller J. H. ( 1972). Experiments in Molecular Genetics. New York:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  23. Pazour G. J. & Das A. ( 1990a;). Characterisation of the VirG binding site of Agrobacterium tumefaciens. . Nucleic Acids Research 18, 6909-6913.
    [Google Scholar]
  24. Pazour G. J. & Das A. ( 1990b;). virG, an Agrobacterium tumefaciens transcriptional activator initiates translation at a UUG codon and is a sequence-specific DNA-binding protein. . Journal of Bacteriology 172, 1241-1249.
    [Google Scholar]
  25. Powell B., Rogowsky P. & Kado C. I. ( 1989;). virG of Agrobacterium tumefaciens plasmid pTiC58 encodes a DNA-binding protein. . Molecular Microbiology 3, 411-419.
    [Google Scholar]
  26. Powell B. S. & Kado C. I. ( 1990;). Specific binding of VirG to the vir box requires a C-terminal domain and exhibits a minimum concentration threshold. . Molecular Microbiology 4, 2159-2165.
    [Google Scholar]
  27. Prince A. S. & Borlam T. ( 1985;). Isolation of a DNA fragment containing replication functions from IncP2 megaplasmid pMG2.. Journal of Bacteriology 161, 792-794.
    [Google Scholar]
  28. Sambrook J., Fritsch E. F. & Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual. . Cold Spring Harbor:: Cold Spring Harbor Laboratory Press;.
  29. Shaw C. H. ( 1991;). Swimming against the tide: chemotaxis in Agrobacterium. . BioEssays 13, 25-29.
    [Google Scholar]
  30. Shaw C. H., Ashby A. M., Brown A. P., Royal C., Loake G. J. & Shaw C. H. ( 1988;). virA and Gare the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens toward acetosyringone. . Molecular Microbiology 2, 413-418.
    [Google Scholar]
  31. Shaw C. H., Loake G. J., Brown A. P., Garrett C. S., Deakin W., Alton G., Hall M., Jones S. A., O'Leary M. & Primavesi L. ( 1991;). Isolation and characterization of behavioural mutants and genes from Agrobacterium tumejaciens. . Journal of General Microbiology 137, 1939-1953.
    [Google Scholar]
  32. Van Larebeke N., Engler G., Holsters M., Van Den Elsacker S., Zaenen I., Schilperoort R. A. & Schell J. ( 1974;). Large plasmid in Agrobacterium tumefaciens essential for crown gall inducing ability. . Nature, London 252, 169-170.
    [Google Scholar]
  33. Winans S. C., Ebert P. R., Stachel S. E., Gordon M. P. & Nester E. W. ( 1986;). A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. . Proceedings of the National Academy of Sciences of the United States of America 83, 8278-8282.
    [Google Scholar]
  34. Winans S. C., Kerstetter R. A., Ward J. E. & Nester E. W. ( 1989;). A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. . Journal of Bacteriology 171, 1616-1622.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-12-2509
Loading
/content/journal/micro/10.1099/00221287-138-12-2509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error