1887

Abstract

Studies on hydroaromatic metabolism in the actinomycete revealed that the organism grows rapidly on quinate (but not on shikimate) as sole carbon- and energy source. Quinate is initially converted into the shikimate pathway intermediate 3-dehydroquinate by an inducible NAD-dependent quinate/shikimate dehydrogenase. 3-Dehydroquinate dehydratase subsequently converts 3-dehydroquinate into 3-dehydroshikimate, which is used partly for the biosynthesis of aromatic amino acids, and is partly catabolized via protocatechuate and the β-ketoadipate pathway. Enzyme studies and analysis of mutants clearly showed that the single 3-dehydroquinate dehydratase present in has a dual function, the first example of a 3-dehydroquinate dehydratase enzyme involved in both the catabolism of quinate and the biosynthesis of aromatic amino acids. This enzyme was purified over 1700-fold to homogeneity. Its further characterization indicated that it is a Type II 3-dehydroquinate dehydratase, a thermostable enzyme with a large oligomeric structure (native 135 × 10) and a subunit of 12 × 10. Characterization of aromatic amino acid auxotrophic mutants of suggested that genes encoding 3-dehydroquinate synthase and 3-dehydroquinate dehydratase are genetically linked but their transcription results in the synthesis of two separate proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-11-2449
1992-11-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/11/mic-138-11-2449.html?itemId=/content/journal/micro/10.1099/00221287-138-11-2449&mimeType=html&fmt=ahah

References

  1. Barea J. L., Giles N. H. 1978; Purification and characterization of quinate (shikimate) dehydrogenase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. Biochimica et Biophysica Acta 524:1–14
    [Google Scholar]
  2. De Boer L., Arder H. W., Dijkhuizen L. 1988; Phenylalanine and tyrosine metabolism in the facultative methylotroph Nocardia sp. 239. Archives of Microbiology 149:459–465
    [Google Scholar]
  3. De Boer L., Vrubwed J. W., Grobben G., Dijkhuizen L. 1989; Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph Nocardia sp. 239. Archives of Microbiology 151:319–325
    [Google Scholar]
  4. De Boer L., Dijkhuizen L., Grobben G., Goodfellow M., Stackebrandt E., Parlett J. H., Whitehead D., WITT O. 1990; Amycolatopsis metharwlica sp. nov., a facultatively methylotrophic actinomycete. International Journal of Systematic Bacteriology 40:194–204
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  6. Bruce N. C., Cain R. B. 1990; Hydroaromatic metabolism in Rhodococcus rhodochrous: purification and characterization of its NAD-dependent quinate dehydrogenase. Archives of Microbiology 154:179–186
    [Google Scholar]
  7. Cain R. B. 1972a; Metabolism of shikimate and quinate by Aspergillus niger and its regulation. Proceedings of the Biochemical Society15p–16p
    [Google Scholar]
  8. Cain R. B. 1972b; The identity of shikimate dehydrogenase and quinate dehydrogenase in Aspergillus niger. Proceedings of the Biochemical Society15p
    [Google Scholar]
  9. Cain R. B. 1981 Regulation of aromatic and hydroaromatic catabolic pathways in nocardiaform actinomycetes. In Actirwmycetes. Proceedings of the Fourth International Symposium on Actinomycete Biology, pp. 335–354 Edited by Schaal K. P., Pulverer G. New York: Gustav Fischer;
    [Google Scholar]
  10. Chaleff R. S. 1974; The inducible quinate-shikimate catabolic pathway in Neurospora crassa: induction and regulation of enzyme synthesis. Journal of General Microbiology 81:357–372
    [Google Scholar]
  11. Charles I. G., Keyte J. W., Brammar W. J., Hawkins A. R. 1985; Nucleotide sequence encoding the biosynthetic dehydroquinase function of the pentafunctional AROM locus of Aspergillus nidulans. Nucleic Acids Research 13:8119–8128
    [Google Scholar]
  12. Charles L. G., Keyte J. W., Brammar W. J., Smith M., Hawkins A. R. 1986; The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Research 14:2201–2213
    [Google Scholar]
  13. Chaudhuri S., Lambert J. M., Mccoll L.A., Coggins J. R. 1986; Purification and characterization of 3-dehydroquinase from Escherichia coli. Biochemical Journal 239:699–704
    [Google Scholar]
  14. Chaudhuri S., Anton I. A., Coggins J. R. 1987a; Shikimate dehydrogenase from Escherichia coli. Methods of Enzymology 142:315–320
    [Google Scholar]
  15. Chaudhuri S., Duncan K., Coggins J. R. 1987b; 3-Dehydro-quinate dehydratase from Escherichia coli. Methods of Enzymology 142:320–324
    [Google Scholar]
  16. Chaudhuri S., Duncan K., Graham L. D., Coggins J. R. 1991; Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. Biochemical Journal 275:1–6
    [Google Scholar]
  17. Coggins J. R., Boocock M. R., Chaudhuri S., Lambert J. M., Lumsden J., Nimmo G. A., Sminl D. D. S. 1987; The arom multifunctional enzyme from Neurospora crassa. Methods of Enzymology 142:325–341
    [Google Scholar]
  18. Da Silva A. J. S., Whiti Ingidn H., Clements J., Roberts C. F., Hawkins A. R. 1986; Sequence analysis and transformation by the catabolic 3-dehydroquinase (QUTE) gene from Aspergillus nidulans. Biochemical Journal 240:481–488
    [Google Scholar]
  19. Duncan K., Chaudhuri S., Campbell M. S., Coggins J. R. 1986; The overexpression and complete amino acid sequence of Escherichia coli 3-dehydr oq uinase. Biochemical Journal 238:475–483
    [Google Scholar]
  20. Fiedler E., Schultz G. 1985; Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiology 79:212–218
    [Google Scholar]
  21. Garbe T., Servos S., Hawkins A., Dimitriadis G., Young D., Dougan G., Charles I. G. 1991; The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Molecular and General Genetics 228:385–392
    [Google Scholar]
  22. Giles N. H., Partridge C. W. H., Ahmed S. I., Case M. E. 1967; The occurrence of two dehydroquinases in Neurospora crassa, one constitutive and one inducible. Genetics 58:1930–1937
    [Google Scholar]
  23. Giles N. H., Case M. E., Baum J., Geever R., Huiet L., Patel V., Tyler B. 1985; Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa. Microbiological Reviews 49:338–358
    [Google Scholar]
  24. Grewe R., Haendler H. 1968; 5-Dehydroquinic acid. Biochemical Preparations 11:21–26
    [Google Scholar]
  25. Grund E., Knorr C., Eichenlaub R. 1990; Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Applied and Environmental Microbiology 56:1459–1464
    [Google Scholar]
  26. Hautala J. A., Jacobson J. W., Case M. E., Giles N. H. 1975; Purification and characterization of catabolic dehydroquinase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. Journal of Biological Chemistry 250:6008–6014
    [Google Scholar]
  27. Hawkins A. R., Reinert W. R., Giles N. H. 1982; Characterization of Neurospora crassa catabolic dehydroquinase purified from N. crassa and Escherichia coli. Biochemical Journal 203:769–773
    [Google Scholar]
  28. Kleanthous C., Deka R., Davis K., Kelly S. M., Cooper A., Harding S. E., Price N. C., Hawkins A. R., Coggins J. R. 1992; A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochemical Journal 282:687–695
    [Google Scholar]
  29. Van Kleef M. A. G., Duine J. A. 1988; Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. Archives of Microbiology 150:32–36
    [Google Scholar]
  30. Laemmli U. K., Favre K. 1973; Maturation of the head of bacteriophage T4. I. DNA packaging events. Journal of Molecular Biology 80:575–599
    [Google Scholar]
  31. Lamb H.K., Hawkins A. R., Smith M., Harvey I. J., Brown J., Turner G., Roberts C. F. 1990; Spatial and biological characterization of the complete quinic acid utilization gene cluster in Aspergillus nidulans. Molecular and General Genetics 223:17–23
    [Google Scholar]
  32. Lamb H. K., Bagshaw C. R., Hawkins A. R. 1991; In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Molecular and General Genetics 227:187–196
    [Google Scholar]
  33. Lamb H. K., Van Den Hombergh J. P. T. W., Newton G. H., Moore J. D., Roberts C. F., Hawkins A. R. 1992; Differential flux through the quinate and shikimate pathways. Implications for the channelling hypothesis. Biochemical Journal 284:181–187
    [Google Scholar]
  34. Lumsden J., Coggins J. R. 1977; The subunit structure of the arom multienzyme complex of Neurospora crassa: a possible pentafunctional polypeptide chain. Biochemical Journal 161:599–607
    [Google Scholar]
  35. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry 262:10035–10038
    [Google Scholar]
  36. Mousdale D. M., Campbell M. S., Coggins J. R. 1987; Purification and characterization of bifunctional dehydroquinaseshikimate: NADP oxidoreductase from pea seedlings. Phytochemistry 26:2665–2670
    [Google Scholar]
  37. Polley L. D. 1978; Purification and characterization of 3-dehydroquinate hydrolase and shikimate oxidoreductase. Evidence for a bifunctional enzyme. Biochimica et Biophysica Acta 526:259–266
    [Google Scholar]
  38. Strøman P., Reinert W. R., Giles N. H. 1978; Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. Journal of Biological Chemistry 2S3:4593–4598
    [Google Scholar]
  39. Tresguerres M. E. F., Ingledew W. M., Canovas J. L. 1972; Potential competition for 5-dehydroshikimate between the aromatic biosynthetic route and the catabolic hydroaromatic pathways. Archives of Microbiology 82:111–119
    [Google Scholar]
  40. White P. J., Young J., Hunter I. S., Nimmo H. G., Coggins J. R. 1990; The purification and characterization of 3-dehydroquinase from Streptomyces coelicolor. Biochemical Journal 265:735–738
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-11-2449
Loading
/content/journal/micro/10.1099/00221287-138-11-2449
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error