1887

Abstract

A lysine antimetabolite, L-4-oxalysine [HNCHCHOCHCH(NH)COOH], and oxalysine-containing di-, tri-, tetra- and pentapeptides inhibited growth of H317. Micromolar amounts of amino acids were found to overcome ammonium repression of the di- and tripeptide transport system(s) in strain H317. Several amino acids increased the toxicity of oxalysine-containing di- and tripeptides for with little or no increase in toxicity of oxalysine or oxalysine-containing tetra- and pentapeptides. L-Lysine completely reversed the toxicity of oxalysine by competing with the transport of oxalysine into the cells. In contrast, L-lysine increased the toxicity of oxalysine-containing di- and tripeptides, but had no effect on the toxicity of oxalysine-containing tetra- and pentapeptides. Incubation of cells with L-lysine for 4 h resulted in a 15-fold increase in the rate of transport of radiolabelled dileucine, indicating that increased sensitivity of to some toxic peptides in the presence of L-lysine may be attributed to an increased rate of transport of these peptides. Our results indicate that the dipeptide and tripeptide transport system(s) of are regulated by micromolar amounts of amino acids in a similar fashion to the regulation of peptide transport in and that multiple peptide transport systems differentially regulated by various nitrogen sources and amino acids exist in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-11-2353
1992-11-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/11/mic-138-11-2353.html?itemId=/content/journal/micro/10.1099/00221287-138-11-2353&mimeType=html&fmt=ahah

References

  1. Abouhamad W. N., Manson M., Gibson M. M., Higgins C. F. 1991; Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Molecular Microbiology 5:1035–1047
    [Google Scholar]
  2. Ames B. N., Ames G. F.-L, Young J. D., Tsuchiya D., Lecocq J. 1973; Illicit transport: the oligopeptide permease. Proceedings of the National AcademyofSciencesofthe United States of America, 70456–458
    [Google Scholar]
  3. Andrews J. C., Short S. A. 1986; opp–lac operon fusions and transcriptional regulation of the Escherichia coli trp-linked oligopeptide permease. Journal of Bacteriology 165:434–442
    [Google Scholar]
  4. Andrews J. C., Blevins T. C., Short S. A. 1986; Regulation of peptide transport in Escherichia coli: induction of trp-linked operon encoding the oligopeptide permease. Journal of Bacteriology 165:428–433
    [Google Scholar]
  5. Basrai M.A., Naider F., Becker J. M. 1990; Internalization of lucifer yellow in Candida albicans by fluid phase endocytosis. Journal of General Microbiology 136:1059–1065
    [Google Scholar]
  6. Becker J.M., Naider F. 1977; Peptide transport in yeast: uptake of radioactive trimethionine in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics 178:245–255
    [Google Scholar]
  7. Becker J. M., Naider F. 1980 Transport and utilization of peptides by yeast. In Transport and Utilization of Amino Acids, Peptides and Proteins by Microorganisms, pp. 257–279 Edited by Payne J. W. London: John Wiley;
    [Google Scholar]
  8. Becker J.M., Covert N. L., Shenbagamurthi P., Steinfeld A. S., Naider F. 1983; Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrobial Agents and Chemotherapy 23:926–929
    [Google Scholar]
  9. Borowski E., Smulowski M., Dzieduszycka M., Sawlewicz P., Chmara H., Milewski S. 1979 Epoxypeptides - new group of cell wall biosynthesis inhibitors in some fungi. In Peptides: Structure and Biological Function, (6th American Peptide Symposium) pp. 563–566 Edited by Gross E., Meinhofer J. Rockford, IL: Pierce Chemical;
    [Google Scholar]
  10. Cooper T. G. 1982 Nitrogen metabolism in Saccharomyces cerevisiae. In The Molecular Biology of the Yeast Saccharomyces cerevisiae, pp. 39–99 Edited by Strathern J. N., Jones E.W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Davies M. B. 1980; Peptide uptake in Candida albicans. Journal of General Microbiology 121:181–186
    [Google Scholar]
  12. Decker H., Zahner H., Heitsch H., Konig W. A., Fielder H.-P. 1991; Structure-activity relationships of the nikkomycins. Journal of General Microbiology 137:1805–1813
    [Google Scholar]
  13. Fickel T. E., Gilvarg C. 1973; Transport of impermeant substances in E. coli by way of oligopeptide permease. Nature New Biology 241:161–163
    [Google Scholar]
  14. Guyer C. A., Morgan D. G., Osheroff N., Staros J. V. 1985; Purification and characterization of a periplasmic oligopeptide binding protein from Escherichia coli. Journal of Biological Chemistry 260:10812–10818
    [Google Scholar]
  15. Hammond S. M., Claes Son A., Jans Son A. M., Larsson L.-G., Pring B. G., Town C. M., Ekstrom B. 1987; A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Nature, London 327:730–732
    [Google Scholar]
  16. Higgins C. F. 1984 Peptide transport systems of Salmonella typhimurium and Escherichia coli. In ASM Microbiology, pp. 17–20 Edited by Schlesinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Higgins C. F. 1987 Synthesizing designer drugs. Nature London: 327655–656
    [Google Scholar]
  18. Hiles I. D., Gallagher M. P., Jamieson D. J., Higgins C. F. 1987; Molecular characterization of the oligopeptide permease of Salmonella typhimurium. Journal of Molecular Biology 195:125–142
    [Google Scholar]
  19. Island M. D., Naider F., Becker J. M. 1987; Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations. Journal of Bacteriology 169:2132–2136
    [Google Scholar]
  20. Island M. D., Perry J. R., Naider F., Becker J. M. 1991; Isolation and characterization of S. cerevisiae mutants deficient in amino acid-inducible peptide transport. Current Genetics 20:457–463
    [Google Scholar]
  21. Jamieson D. J., Higgins C. F. 1984; Anaerobic and leucine-dependent expression of a peptide transport gene in Salmonella typhimurium. Journal of Bacteriology 160:131–136
    [Google Scholar]
  22. Kenig M., Abraham E. P. 1976; Antimicrobial activities and antagonists of bacilysin and anticapsin. Journal of General Microbiology 94:37–45
    [Google Scholar]
  23. Kingsbury W. D., Boehm J. C., Mehta R. J., Grappel S. F. 1983; Transport of antimicrobial agents using peptide carrier systems: anticandidal activity of m-ftuorophenylalanine-peptide conjugates. Journal of Medicinal Chemistry 26:1725–1729
    [Google Scholar]
  24. Krainer E., Becker J. M., Naider F. 1991; Synthesis and biological evaluation of dipeptidyl and tripeptidyl polyoxin and nikkomycin analogues as anticandidal prodrugs. Journal of Medicinal Chemistry 34:174–180
    [Google Scholar]
  25. Krainer E., Khare R. K., Naider F., Becker J. M. 1987; Chemochromatography: its use for the separation of Nikkomycins X+Z. Analytical Biochemistry 160:233–239
    [Google Scholar]
  26. Lichliter W. D., Naider F., Becker J. M. 1976; Basis for the design of anticandidal agents from studies of peptide utilization in Candida albicans. Antimicrobial Agents and Chemotherapy 10:483–490
    [Google Scholar]
  27. Logan D. A., Becker J.M., Naider F. 1979; Peptide transport in Candida albicans. Journal of General Microbiology 114:179–186
    [Google Scholar]
  28. Mccarthy P. J., Troke P. F., Gull K. 1985a; Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. Journal of General Microbiology 131:775–780
    [Google Scholar]
  29. Mccarthy J.P., Nisbet L. J., Boehm J.C., Kingsbury W. D. 1985b; Multiplicity of peptide permeases in Candida albicans: evidence from novel chromophoric peptides. Journal of Bacteriology 162:1024–1029
    [Google Scholar]
  30. McCordt J., Ravel J. M., Skinner C. G., Shive W. 1957; DL-4-Oxalysine, an inhibitory analog of lysine. Journal of the American Chemical Society 19:5693–5696
    [Google Scholar]
  31. Mehta R. J., Kingsbury W. D., Valenta J., Actor P. 1984; Anti-Candida activity of polyoxin: example of peptide transport in yeasts. Antimicrobial Agents and Chemotherapy 25:373–374
    [Google Scholar]
  32. Meyer-Glauner W., Bernard E., Armstrong D., Merrifeld B. 1982; The antifungal activity of carrier peptides, L-arginyl-X-L-phenylalanine, containing amino acid antagonists or atypical nonbiogenic D-amino acids in the central position. Zentralblatt far Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Orig A) 252:274–278
    [Google Scholar]
  33. Milewski S., Andruskiewicz R., Borowski E. 1988; Substrate specificity of peptide permeases in Candida albicans. FEMS Microbiology Letters 50:73–78
    [Google Scholar]
  34. Milewski S., Andruskiewicz R., Kasprzak L., Mazerski J., Mignini F., Borowski E. 1991a; Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase. Antimicrobial Agents and Chemotherapy 35:36–43
    [Google Scholar]
  35. Milewski S., Migini F., Borowski E. 1991b; Synergistic action of nikkomycin X/Z with azole antifungals on Candida albicans. Journal of General Microbiology 137:2155–2161
    [Google Scholar]
  36. Moneton P., Sarthou P., Legoffic F. 1986a; Role of nitrogen source in peptide transport in Saccharomyces cerevisiae. FEMS Microbiology Letters 36:95–98
    [Google Scholar]
  37. Moneton P., Sarthou P., Legoffic F. 1986b; Transport and hydrolysis of peptides in Saccharomyces cerevisiae. Journal of General Microbiology 132:2147–2153
    [Google Scholar]
  38. Naider F., Becker J. M. 1987 Peptide transport in Candida albicans: implications for the development of antifungal agents. In Current Topics in Medical Mycology II, pp. 170–198 Edited by McGinnis M. M. Berlin & New York: Springer;
    [Google Scholar]
  39. Naider F., Shenbagamurthi P., Steinfeld A. S., Smith H. A., Boney C., Becker J.M. 1983; Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrobial Agents and Chemotherapy 24:787–796
    [Google Scholar]
  40. Nisbet T. M., Payne J. W. 1979; Peptide uptake in Saccharomyces cerevisiae: characteristics of transport system shared by di- and tripeptides. Journal of General Microbiology 115:127–133
    [Google Scholar]
  41. Payne J. W. 1980 Transport and utilization of peptides by bacteria. In Microorganisms and Nitrogen Sources, pp. 211–256 Edited by Payne J. W. New York: John Wiley;
    [Google Scholar]
  42. Payne J. W., Shallow D. A. 1985; Studies on drug targeting in the pathogenic fungus Candida albicans: peptide transport mutants resistant to polyoxins, nikkomycins and bacilysin. FEMS Microbiology Letters 28:55–60
    [Google Scholar]
  43. Payne J. W., Barrett-Bee K. J., Shallow D. A. 1991; Peptide substrates rapidly modulate expression of dipeptide and oligopeptide permeases in Candida albicans. FEMS Microbiology Letters 19:15–20
    [Google Scholar]
  44. Rao L. R. S., Prasad D. S., Prasad R. 1986; Transport of basic amino acids in Candida albicans. Biochimica et Biophysica Acta 856:237–243
    [Google Scholar]
  45. Riggsby W. S., Torres-Bauza L. J., Wills J. W., Townes T. M. 1982; DNA content, kinetic complexity, and the ploidy question in Candida albicans. Molecular and Cellular Biology 2:853–862
    [Google Scholar]
  46. Shallow D. A., Barrett-Bee K. J., Payne J. W. 1991; Evaluation of the dipeptide and oligopeptide permeases of Candida albicans as uptake routes for synthetic anticandidal agents. FEMS Microbiology Letters 19:9–14
    [Google Scholar]
  47. Stapley E. O., Miller T. W., Mata J.M., Hendlin D. 1968; L-4-Oxalysine, an antimetabolic antibiotic of microbial origin. Antimicrobial Agents and Chemotherapy 1401–406
    [Google Scholar]
  48. Wolfinbarger L. Jr., Marzluf G. A. 1975; Specificity and regulation of peptide transport in Neurospora crassa. Archives of Biochemistry and Biophysics 171:637–644
    [Google Scholar]
  49. Wolfinbarger L. Jr 1980 Transport and utilization of peptides by fungi. In Microorganisms and Nitrogen Sources, pp. 281–300 Edited by Payne J. W. New York: John Wiley;
    [Google Scholar]
  50. Yadan J.-C., Gonneau M., SARTHOU P., Le Goffic F. 1984; Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. Journal of Bacteriology 160:884–888
    [Google Scholar]
  51. Zhang H.-L., Liang S.-F., Wu S.-Y., Wang F.-J., Gu X.-Y., Gui J.-Z. 1979; Studies of the antimetabolic antibiotics: taxonomic study of L-4-oxalysine producer - Streptomyces roseoviridofuscus, n. sp. Acta Microbiologica Sinica 19:126–130
    [Google Scholar]
  52. Zheng H., Zhang H.-L., Becker J. M., Naider F., Farkas W.R. 1991; The lysine analog L-oxalysine is an inhibitor of RNA synthesis. International Journal of Biochemistry 24:145–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-11-2353
Loading
/content/journal/micro/10.1099/00221287-138-11-2353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error