1887

Abstract

The assimilation of sulphate in , comprising the reduction of sulphate to sulphide and the incorporation of the sulphur atom into a four-carbon chain, requires the integrity of 13 different genes. To date, the functions of nine of these genes are still not clearly established. A set of strains, each bearing a mutation in one gene, was studied. Phenotypic studies and enzyme determinations showed that the products of at least five genes are needed for the synthesis of an enzymically active sulphite reductase. These genes are and . Wild-type strains of can use organic metabolites such as homocysteine, cysteine, methionine and -adenosylmethionine as sulphur sources. They are also able to use inorganic sulphur sources such as sulphate, sulphite, sulphide or thiosulphate. Here we show that both of the two sulphur atoms of thiosulphate are used by . Thiosulphate is cleaved into sulphite and sulphide prior to utilization by the sulphate assimilation pathway, as the metabolism of one sulphur atom from thiosulphate requires the presence of an active sulphite reductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-10-2021
1992-10-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/10/mic-138-10-2021.html?itemId=/content/journal/micro/10.1099/00221287-138-10-2021&mimeType=html&fmt=ahah

References

  1. Chauncey T. R., & Westley J. 1983; Improved purification and sulfhydryl analysis of thiosulfate reductase. Biochimica et Biophysica Acta 744:304–311
    [Google Scholar]
  2. Cherest H., , Ngoc Nguyen, , T., & Surdin-Kerian Y. 1985; Transcriptional regulation of the met3 gene of Saccharomyces cerevisiae . Gene 34:269–281
    [Google Scholar]
  3. Cherest H., & Surdin-Kerian Y. 1992; Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cere-visiae: updating of the sulfur metabolism pathway. Genetics 130:51–58
    [Google Scholar]
  4. Cherest H., , Kerjan P., & Surdin-Kerjan Y. 1987; The Saccharomyces cerevisiae MET3 gene: nucleotide sequence and relationship of the 5′ non-coding region to that of MET25 . Molecular and General Genetics 210:307–313
    [Google Scholar]
  5. Cherest H., , Thomas D., & Surdin-Kerjan Y. 1990; Nucleotide sequence of the MET8 gene of Saccharomyces cerevisiae . Nucleic Acids Research 18:659
    [Google Scholar]
  6. Cohen G. N., & Saint Girons I. 1987 Biosynthesis of threonine, lysine, and methionine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 429–444 Edited by Niedhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Elskens M. T., , Jaspers C. L., & Penninckx M. J. 1991; Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae . Journal of General Microbiology 137:637–644
    [Google Scholar]
  8. Grant W. M. 1947; Colorimetric determination of sulfur dioxide. Analytical Chemistry 19:345–346
    [Google Scholar]
  9. Kerjan P., , Cherest H., & Surdin-Kerjan Y. 1986; Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene. Nucleic Acids Research 14:7861–7871
    [Google Scholar]
  10. Kitano K., , Nozaki Y., & Imada A. 1985; Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of S. griseus subsp. cryophilus C-19393. Agricultural and Biological Chemistry 49:677–684
    [Google Scholar]
  11. Korch C., , Mountain H. A., & Bystrom A. S. 1991; Cloning, nucleotide sequence and regulation of METl4, the gene encoding the APS kinase of Saccharomyces cerevisiae . Molecular and General Genetics 228:96–108
    [Google Scholar]
  12. Kredich N. H. 1987 Biosynthesis of cysteine. In Escherichia coli and Salmonella typhymurium: Cellular and Molecular Biology, pp. 419–428 Edited by Niedhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Lydiate D. J., , Mendez C., , Kieser H. M., & Hopwood D. A. 1988; Mutation and cloning of clustered Streptomyces genes essential for sulphate metabolism. Molecular and General Genetics 211:415–423
    [Google Scholar]
  14. Masselot M., & De Robichon-Szulmajster H. 1975; Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Molecular and General Genetics 139:121–132
    [Google Scholar]
  15. Masselot M., & Surdin-Kerjan Y. 1977; Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene-enzyme relationships in the sulfate assimilation pathway. Molecular and General Genetics 154:23–30
    [Google Scholar]
  16. Nakamura T., , Kon Y., , Iwahashi H., & Eguchi Y. 1983; Evidence that thiosulfate assimilation by Salmonella typhimurium is catalysed by cysteine synthase B. Journal of Bacteriology 156:656–662
    [Google Scholar]
  17. Nakamura T., , Iwahashi H., & Eguchi Y. 1984; Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium . Journal of Bacteriology 158:1122–1127
    [Google Scholar]
  18. Ostrowski J., , Wu J.-Y., , Rueger D. C., , Miller B. E., , Siegel K. M., & Kredich N. M. 1989; Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysl and cysH and a model for the siroheme-Fe4 S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. Journal of Biological Chemistry 264:15726–15737
    [Google Scholar]
  19. Rikkerink E. H. A., , Magee B. B., & Magee P. T. 1988; Opaque-white phenotype transition: a programmed morphological transition in Candida albicans . Journal of Bacteriology 170:895–899
    [Google Scholar]
  20. Schwenn J. D., , Krone F. A., & Husmann K. 1988; Yeast PAPS reductase: properties and requirements of the purified enzyme. Archives of Microbiology 150:313–319
    [Google Scholar]
  21. Siegel L. M. 1965; A direct microdetermination for sulfide. Analytical Biochemistry 11:126–132
    [Google Scholar]
  22. Thomas D., , Cherest H., & Surdin-Kerjan Y. 1989; Elements involved in S-adenosylmethionine mediated regulation of the Saccharomyces cerevisiae MET25 gene. Molecular and Cellular Biology 9:3292–3298
    [Google Scholar]
  23. Thomas D., , Barbey R., & Surdin-Kerjan Y. 1990; Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae . Journal of Biological Chemistry 265:15518–15524
    [Google Scholar]
  24. Thomas D., , Cherest H., & Surdin-Kerjan Y. 1991; Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to nutritional requirement for inorganic sulfur. EMBO Journal 10:547–553
    [Google Scholar]
  25. Thomas O., , Jacquemin I., & Surdin-Kerjan Y. 1992; MET4, a leucine zipper protein, and centromere binding factor 1 are both required for transcriptional activation of sulfur metabolism in yeast. Molecular and Cellular Biology 12:1719–1727
    [Google Scholar]
  26. Tsang M. L.-S., & Schiff J. A. 1976; Sulfate reducing pathway in Escherichia coli involving bound intermediates. Journal of Bacteriolo-gy 125:923–933
    [Google Scholar]
  27. De Vito P. C., & Dreyfuss J. 1964; Metabolic regulation of adenosine triphosphate sulfurylase in yeast. Journal of Bacteriology 88:1341–1348
    [Google Scholar]
  28. Warren M. J., , Roessner C. A., , Santander P. J., & Scott I. 1990; The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochemical Journal 265:725–729
    [Google Scholar]
  29. Yoshimoto A., & Sato R. 1968a; Studies on yeast sulfite reductase. I. Purification and characterization. Biochimica et Biophysica Acta 153:555–575
    [Google Scholar]
  30. Yoshimoto A., & Sato R. 1968b; Studies on yeast sulfite reductase. II. Partial purification and properties of genetically incomplete sulfite reductases. Biochimica et Biophysica Acta 153:576–588
    [Google Scholar]
  31. Yoshimoto A., & Sato R. 1970; Studies on yeast sulfite reductase. III. Further characterization. Biochimica et Biophysica Acta 220:190–205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-10-2021
Loading
/content/journal/micro/10.1099/00221287-138-10-2021
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error