1887

Abstract

Respiratory activities of moderately halophilic bacteria from diverse origins were studied with respect to the requirement for Na, the site of Na-dependent reactions in the respiratory chain and the presence of a redox-driven Napump. All the moderately halophilic bacteria examined required 1.0–2.0 M-NaCl for optimum growth. The NADH oxidase activity of the respiratory chain was influenced by the method of membrane preparation. When the cells were disrupted by a French press, the presence of 0.2 M-NaSO (or 0.4 M-NaCl) was required to protect against loss of Na-dependent NADH oxidase activity. Membranes prepared by osmotic lysis retained high Na-dependent NADH oxidase activity. Of eight moderate halophiles investigated, the six Gram-negative bacteria possessed Na-dependent NADH oxidase activity. The site of Na-dependent activation in the respiratory chain was located on the NADH: quinone reductase segment in all these halophiles. Other activities, such as succinate oxidase and the terminal oxidase, showed no specific requirement for Na. Using inverted membrane vesicles prepared from these halophiles, it was found that membrane potential generation linked to NADH oxidation was not completely dissipated by addition of the protonophore carbonyl cyanide -chlorophenylhydrazone (CCCP), but was entirely sensitive to CCCP plus the Na-conducting ionophore monensin. A Na-dependent NADH oxidase was not detected in membranes from the two Gram-positive halophiles, and subsp. , that we investigated. Since the membrane potential generated by oxidation of NADH was completely dissipated by CCCP, these halophiles did not have any respiration-driven Napumps.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-10-1999
1992-10-01
2024-09-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/10/mic-138-10-1999.html?itemId=/content/journal/micro/10.1099/00221287-138-10-1999&mimeType=html&fmt=ahah

References

  1. Avetisyan A. V., , Dibrov P.A., , Skulachev V. P., & Sokolov M. V. 1989; The Na+-motive respiration in Escherichia coli . FEBS Letters 254:17–21
    [Google Scholar]
  2. Breed R. S., , Murray E.G. D., & Smith N. R. (editors) 1957; Order I. Pseudomonadales. Family IV. Pseudomonadaceae 58 Pseudomonas beijerinckii Hof; 1935 In Bergey's Manual of Determinative Bacteriology, , 7th edn. p. 121. London: Balliere, Tindall & Cox;
    [Google Scholar]
  3. Dimroth P. 1987; Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiological Reviews 51:320–340
    [Google Scholar]
  4. Dimroth P., & Thomer A. 1989; A primary respiratory Na+ pump of anaerobic bacterium: the Na+-dependent NADH :quinone reductase of Klebsiella pneumoniae . Archives of Microbiology 151:439–444
    [Google Scholar]
  5. Efiok B. J. S., & Webster D.A. 1990; A cytochrome that can pump sodium ion. Biochemical and Biophysical Research Communications 173:370–375
    [Google Scholar]
  6. Fendrich C. 1988; Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. Systematic and Applied Microbiology 11:36–43
    [Google Scholar]
  7. Flannery W. L., , Doetsch R. N., & Hansen P. A. 1952; Salt desideratum of Vibrio costicolus, an obligate halophilic bacterium. I. Ionic replacement of sodium chloride requirement. Journal of Bacteriology 64:713–717
    [Google Scholar]
  8. Hao M. V., , Kocur M., & Komagata K. 1984; Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. Journal of General and Applied Microbiology 30:449–459
    [Google Scholar]
  9. Hayashi M., & Unemoto T. 1986; FAD and FMN flavoproteins participate in the sodium-transport respiratory chain NADH: quinone reductase of a marine bacterium. Vibrio alginolyticus. FEBS Letters 202:327–330
    [Google Scholar]
  10. Hayashi M., & Unemoto T. 1987; Subunit components and their roles in the sodium-transport NADH: quinone reductase of a marine bacterium. Vibrio alginolyticus. Biochimica et Biophysica Acta 890:47–54
    [Google Scholar]
  11. Kaesler B., & Schonheit P. 1989; The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2-3 Na+/CO2 . European Journal of Biochemistry 184:223–232
    [Google Scholar]
  12. Kamekura M., & Onishi H. 1974; Halophilic nuclease from a moderately halophilic Micrococcus varians . Journal of Bacteriology 119:339–344
    [Google Scholar]
  13. Kamekura M., & Onishi H. 1982; Cell-associated cations of the moderately halophilic Micrococcus varians ssp. halophilus grown in media of high concentrations of LiCl, NaCl, KCl, RbCl, or CsCI. Canadian Journal of Microbiology 28:155–161
    [Google Scholar]
  14. Ken-Dror S., , Preger R., & Av1-Dor Y. 1986a; Functional characterization of the uncoupler-insensitive Na+ pump of the halotolerant bacterium, Ba1 . Archives of Biochemistry and Biophysics 244:122–127
    [Google Scholar]
  15. Ken-Dror S., , Lanyi J. K., , Schobert B., , Silver B., & Avi-Dor Y. 1986b; An NADH:quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions. Archives of Biochemistry and Biophysics 244:766–772
    [Google Scholar]
  16. Kostyrko V. A., , Semeykina A. L., , Skulachev V. P., , Smirnova I. A., , Vaghina M. L., & Verkhovskaya M. L. 1991; The H+-motive and Na+-motive respiratory chains in Bacillus FTU subcellular vesicles. European Journal of Biochemistry 198:527–534
    [Google Scholar]
  17. Matheson A. T., , Sprott G. D., , Mcdonald I. J., & Tessier H. 1976; Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. Canadian Journal of Microbiology 22:780–786
    [Google Scholar]
  18. MÜller V., , Winner C., & Gottschalk G. 1988; Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri . European Journal of Biochemistry 178:519–525
    [Google Scholar]
  19. Ohno Y., , Yano I., & Masui M. 1979; Effect of NaCl concentration and temperature on the phospholipid and fatty acid compositions of a moderately halophilic bacterium. Pseudomonas halosaccharolytica. Journal of Biochemistry 85:413–421
    [Google Scholar]
  20. Quesada E., , Ventosa A., , Ruiz-Berraquero F., & Ramos-Cormen-Zana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. International Journal of Systematic Bacteriology 34:287–292
    [Google Scholar]
  21. Semeykina A. L., , Skulachev V. P., , Verkhovskaya M. L., , Bulygina E. S., & Chumakov K. M. 1989; The Na+-motive terminal oxidase activity in an alkalo- and halo-tolerant Bacillus . European Journal of Biochemistry 183:671–678
    [Google Scholar]
  22. Skulachev V. P. 1989; Bacterial Na+ energetics. FEBS Letters 250:106–114
    [Google Scholar]
  23. Tokuda H., & Unemoto T. 1981; A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus . Biochemical and Biophysical Research Communications 102:265–271
    [Google Scholar]
  24. Tokuda H., & Unemoto T. 1982; Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus . Journal of Biological Chemistry 251:10007–10014
    [Google Scholar]
  25. Tokuda H., & Unemoto T. 1984; Na+ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus . Journalof Biological Chemistry 259:7785–7790
    [Google Scholar]
  26. Tokuda H., & Kogure K. 1989; Generalized distribution and common properties of Na+-dependent NADH :quinone oxidoreductase in Gram-negative marine bacteria. Journal of General Microbiology 135:703–709
    [Google Scholar]
  27. Tsuchiya T., & Shinoda S. 1985; Respiration-driven Na+ pump and Na+ circulation in Vibrio parahaemolyticus . Journal of Bacteriology 162:794–798
    [Google Scholar]
  28. Udagawa T., , Unemoto T., & Tokuda H. 1986; Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola . Journal of Biological Chemistry 261:2616–2622
    [Google Scholar]
  29. Unemoto T., , Hayashi M., & Hayashi M. 1977; Na+-Dependent activation of NADH oxidase in membrane fractions from halophilic Vibrio alginolyticus and V. costicolus . Journal of Biochemistry 82:1389–1395
    [Google Scholar]
  30. Unemoto T., & Hayashi M. 1989; Sodium-transport NADH :quinone reductase of a marine Vibrio alginolyticus . Journal of Bioenergetics and Biomembranes 21:649–662
    [Google Scholar]
/content/journal/micro/10.1099/00221287-138-10-1999
Loading
/content/journal/micro/10.1099/00221287-138-10-1999
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error