1887

Abstract

Summary: Two assays are described that can distinguish between two modes of attachment of Azospirillum brasilense Sp7 to wheat roots, and quantify the number of attached bacteria. The first assay measures adsorption (Ads), which reaches a maximal level within 2 h of incubation. Adsorption forces are weak, since adsorbed bacteria can be quantitatively removed by vortexing the root in water. In addition, adsorption is strongly reduced by pretreatment of cells with pronase E. The second assay measures anchoring (Anc), which begins only after 8 h of incubation and reaches a maximal level after 16 h. That adsorption and anchoring are different phenomena is further demonstrated by the properties of two classes of attachment mutants. The first class of mutants, deficient in the production of a particular surface polysaccharide, has completely lost anchoring capability, but maintains wild-type adsorption capacity (AdsAnc). Mutants of the second class are defective in adsorption, but not in anchoring (AdsAnc). On the basis of these data, a two-step attachment mechanism of to wheat roots is proposed. The first step consists of a rapid and weak adsorption and depends on bacterial surface protein; the second step is, at least , independent of the first and consists of firm anchoring of adsorbed and free bacteria by means of bacterial extracellular polysaccharide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-9-2241
1991-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/9/mic-137-9-2241.html?itemId=/content/journal/micro/10.1099/00221287-137-9-2241&mimeType=html&fmt=ahah

References

  1. Bashan Y., Levanony H. 1988; Active attachment of Azospirillum brasilense Cd to quartz sand and to a light-textured soil by protein bridging. Journal of General Microbiology 134:2269–2279
    [Google Scholar]
  2. Bashan Y., Levanony H. 1989; Factors affecting adsorption of Azospirillum brasilense Cd to root hairs as compared with root surface of wheat. Canadian Journal of Microbiology 35:936–944
    [Google Scholar]
  3. Bashan Y., Levanony H., Klein E. 1986; Evidence for a weak active external adsorption of Azospirillum brasilense Cd to wheat roots. Journal of General Microbiology 132:3069–3073
    [Google Scholar]
  4. Cangelosi G. A., Hung L., Puvanesarajah V., Stacey G., Ogza D. A., Leigh J. A., Nester E. W. 1987; Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. Journal of Bacteriology 169:2086–2091
    [Google Scholar]
  5. Cangelosi G. A., Martinetti G., Leigh J. A., Lee C. C., Theines C., NESTER E. W. 1989; Role of Agrobacterium tumefaciens ChvA protein in export of β-1,2-glucan. Journal of Bacteriology 171:1609–1615
    [Google Scholar]
  6. Deflaun M. F., Tanzer A. S., McAteer A. L., Marchall B., Levy S. B. 1990; Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluorescens . Applied and Environmental Microbiology 56:112–119
    [Google Scholar]
  7. Del Gallo M., Negi M., Neyra C. A. 1989; Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum . Journal of Bacteriology 171:3504–3510
    [Google Scholar]
  8. Diaz C. L., Melchers L. S., Hooykaas P. J. J., Lugtenberg B. J. J., Kijne J. W. 1989; Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature, London 338:579–581
    [Google Scholar]
  9. Döbereiner J., Pedrosa F. O. 1987 Nitrogen-fixing Bacteria in Non-leguminous Crop Plants Madison (Wisconsin): Science Tech Publishers/Berlin: Springer Verlag;
    [Google Scholar]
  10. Douglas C. J., Halperin W., Nester W. 1982; Agrobacterium tumefaciens mutants that are affected in attachment to plant cells. Journal of Bacteriology 161:850–860
    [Google Scholar]
  11. Elmerich C. 1984; Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Biotechnology 2:967–978
    [Google Scholar]
  12. Eyers M., Vanderleyden J., Van Gool A. 1988; Attachment of Azospirillum to isolated plant cells. FEMS Microbiology Letters 49:435–439
    [Google Scholar]
  13. Gafny R., Okon Y., Kapulnik Y. 1986; Adsorption of Azospirillum brasilense to corn roots. Soil Biology and Biochemistry 18:69–75
    [Google Scholar]
  14. Jain D. K., Patriquin D. G. 1984; Root hair deformation, bacterial attachment and plant growth in wheat-Azospirillum associations. Applied and Environmental Microbiology 48:1208–1213
    [Google Scholar]
  15. Korhonen T. K., Tarkka E., Ranta H., Haahtela K. 1983; Type 3 fimbriae ofKlebsiella sp. : molecular characterization and role in bacterial adhesion to plant roots. Journal of Bacteriology 155:860–865
    [Google Scholar]
  16. La vigne C. 1987; Contribution a l’étude du système racinaire du bananier. Mise au point de rhizotrons et premiers résultats. Fruits 42:265–271
    [Google Scholar]
  17. Madi L., Henis Y. 1989; Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion. Plant and Soil 115:89–98
    [Google Scholar]
  18. Matthysse A. G. 1983; Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. Journal of Bacteriology 154:906–915
    [Google Scholar]
  19. Matthysse A. G. 1987; Characterization of nonattaching mutants of Agrobacterium tumefaciens . Journal of Bacteriology 169:313–323
    [Google Scholar]
  20. Matthysse A. G., Holmes K. V., Gurlitz R. H. G. 1981; Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. Journal of Bacteriology 145:583–595
    [Google Scholar]
  21. Michiels K., Vanderleyden J., Van Gool A. 1989; Azospirillum–plant root associations : a review. Biology and Fertility of Soils 8:356–368
    [Google Scholar]
  22. Michiels K., Verreth C., Vanderleyden J. 1990; Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. Journal of Applied Bacteriology 69:705–711
    [Google Scholar]
  23. Murty M. G., Ladha J. K. 1987; Differential colonization of Azospirillum lipoferum on roots of two varieties of rice (Oriza sativa L.). Biology and Fertility of Soils 4:3–7
    [Google Scholar]
  24. Okon Y. 1985; Azospirillum as a potential inoculant for agriculture. Trends in Biotechnology 3:223–228
    [Google Scholar]
  25. Puvanesarajah V., Schell F. M., Stacey G., Douglas C. J., Nester E. W. 1985; Role for 2-linked-β-D-glucan in the virulence of Agrobacterium tumefaciens . Journal of Bacteriology 164:102–106
    [Google Scholar]
  26. Sadasivan L., Neyra C. A. 1985; Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. Journal of Bacteriology 163:716–723
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning. A Laboratory Manual, 2nd. Cold Spring Harbor, NY: Cold Spring Harbour Laboratory;
    [Google Scholar]
  28. Tarrand J. J., Krieg N. R., Döbereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with the description of a new genus, Azospirillum gen. nov. and two new species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology 24:968–980
    [Google Scholar]
  29. Thomashow M. F., Karlinsey J. E., Marks J. R., Hurlbert R. E. 1987; Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. Journal of Bacteriology 169:3209–3216
    [Google Scholar]
  30. Umali-Garcia M., ., Hubbell D. H., Gaskins M. H., Dazzo F. B. 1980; Association of Azospirillum with grass roots. Applied and Environmental Microbiology 39:219–226
    [Google Scholar]
  31. Vesper S. J. 1987; Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Applied and Environmental Microbiology 53:1397–1405
    [Google Scholar]
  32. Vesper S. J., Bauer D. W. 1986; Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots. Applied and Environmental Microbiology 52:134–141
    [Google Scholar]
  33. Whatley M. H., Bodwin J. S., Lippincott B. B., Lippincott J. A. 1976; Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment. Infection and Immunity 13:1080–1083
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-9-2241
Loading
/content/journal/micro/10.1099/00221287-137-9-2241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error