1887

Abstract

T-2 utilizes -toluate (TC, 4-toluenecarboxylate) as sole source of carbon and energy for growth. Cells grown in TC-salts medium oxygenated terephthalate (PcB, 4-carboxybenzoate) and contained protocatechuate 4,5-dioxygenase but no detectable (methyl)catechol dioxygenase. The intermediates 4-carboxybenzyl alcohol (COL), 4-carboxybenzaldehyde (CYD) and PcB were detected during the metabolism of TC. A TC methyl-monooxygenase system, a COL dehydrogenase and a CYD dehydrogenase were detected, analogous to the known degradative pathway and enzymes for 4-toluenesulphonate (TS) to 4-sulphobenzoate (PSB) (Locher ., 135, 1969-1978, 1989). Genetic evidence indicated that the steps from TS to PSB and from TC to PcB were catalysed by the same enzymes. This hypothesis was substantiated by purifying or separating the appropriate enzymes from cells grown in TS-salts and TC-salts media. The behaviour of pairs of enzymes was effectively identical in all chromatographic and catalytic properties that were compared. The data support the existence of a novel pathway for the degradation of TC, with the same initial pathway enzymes being used to metabolize TS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-9-2201
1991-09-01
2021-04-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/9/mic-137-9-2201.html?itemId=/content/journal/micro/10.1099/00221287-137-9-2201&mimeType=html&fmt=ahah

References

  1. Assinder S. J., Williams P. A. 1990; The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Advances in Microbial Physiology 31:1–69
    [Google Scholar]
  2. Bayly R., Jain R., Poh C. L., Skurray R. 1988; Unity and diversity in the degradation of xylenols by Pseudomonas spp. : a model for the study of evolution. Microbial Catabolism and the Carbon Cycle359–379 Hagedorn S. R., Hanson R. S., Kunz D. A. Chur: Harwood;
    [Google Scholar]
  3. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Burlage R. S., Hooper S. W., Sayley G. S. 1989; The TOL (pWWO) catabolic plasmid. Applied and Environmental Microbiology 55:1323–1328
    [Google Scholar]
  5. Chalmers R. M., Scott A. J., Fewson C. A. 1990; Purification of the benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by the TOL plasmid pWW53 of Pseudomonas putida MT53 and their preliminary comparison with benzyl alcohol dehydrogenase and benzaldehyde dehydrogenases I and II from Acinetobacter calcoaceticus . Journal of General Microbiology 136:637–643
    [Google Scholar]
  6. Chalmers R. M., Keen J. N., Fewson C. A. 1991; Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL plasmid-encoded toluene pathway in Pseudomonas putida : N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions. Biochemical Journal 273:99–108
    [Google Scholar]
  7. Dagley S. 1971; Catabolism of aromatic compounds by microorganisms. Advances in Microbial Physiology 6:1–46
    [Google Scholar]
  8. Dagley S. 1988; Microbial catabolism and the carbon cycle: a perspective. Microbial Catabolism and the Carbon Cycle3–13 Hagedorn S. R., Hanson R. S., Kunz D. A. Chur: Harwood;
    [Google Scholar]
  9. Dagley S., Patel M. D. 1957; Oxidation of pcresol and related compounds by a Pseudomonas . Biochemical Journal 66:227–233
    [Google Scholar]
  10. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proceedings of the National Academy of Sciences of the United States of America 777347–7351
    [Google Scholar]
  11. Engelberts K., Schmidt E., Reineke W. 1989; Degradation of otoluate by Pseudomonas sp. strain WR401. FEMS Microbiology Letters 59:35–38
    [Google Scholar]
  12. Fewson C. A. 1981; Biodegradation of aromatics with industrial relevance. Microbial Degradation of Xenobiotics and Recalcitrant Compounds141–179 Leisinger T., Cook A. M., Hutter R., Nuesch J. London: Academic Press;
    [Google Scholar]
  13. Gibson D. T. 1988; Microbial metabolism of aromatic compounds and the carbon cycle. Microbial Catabolism and the Carbon Cycle33–58 Hagedorn S. R., Hanson R. S., Kunz D. A. Chur: Harwood;
    [Google Scholar]
  14. Gibson D. T., Subramanian V. 1984; Microbial degradation of aromatic compounds. Microbial Degradation of Organic Compounds181–252 Gibson D. T. New York: Marcel Dekker;
    [Google Scholar]
  15. Groenenwegen P. E. J., Driessen A. J. M., Konings W. N., de Bont J. A. M. 1990; Energy-dependent uptake of 4-chloroben-zoate in the coryneform bacterium NTB-1. Journal of Bacteriology 172:419–423
    [Google Scholar]
  16. Hopper D. J. 1988; Properties of pcresol methylhydroxylases. Microbial Catabolism and the Carbon Cycle247–258 Hagedorn S. R., Hanson R. S., Kunz D. A. Chur: Harwood;
    [Google Scholar]
  17. Johnston J. B., Murray K., Cain R. B. 1975; Microbial metabolism of aryl sulphonates. A reassessment of colorimetrie methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie van Leeuwenhoek 41493–511
    [Google Scholar]
  18. Kiyohara H., Nagao K., Yano K. 1981; Isolation and some properties of N AD-linked 2-carboxybenzaldehyde dehydrogenase in Alcaligenes faecalis AFK2 grown on phenanthrene. Journal of General and Applied Microbiology 27:443–445
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  20. Locher H. H., Leisinger T., Cook A.M. 1989; Degradation ptoluenesulphonic acid via sidechain oxidation, desulphonation and meta ring cleavage in Pseudomonas (Comamonas) testosteroni T-2. Journal of General Microbiology 135:1969–1978
    [Google Scholar]
  21. Locher H. H., Leisinger T., Cook A. M. 1991a; 4-Sulphoben-zoate 3,4-dioxygenase : purification and properties of a desulphona-tive two-component enzyme system from Comamonas testosteroni T-2. Biochemical Journal 274:833–842
    [Google Scholar]
  22. Locher H. H., Leisinger T., Cook A. M. 1991b; 4-Toluene sulfonate methyl-monooxygenase from Comamonas testosteroni T-2 : purification and some properties of the oxygenase component. Journal of Bacteriology 173:3741–3748
    [Google Scholar]
  23. Ribbons D. W. 1988; More about phthalates. Microbial Catabolism and the Carbon Cycle85–100 Hagedorn S. R., Hanson R. S., Kunz D. A. Chur: Harwood;
    [Google Scholar]
  24. Sayler G. S., Shields M. S., Tedford E. T., Breen A., Hooper S. W., Sirotkin K. M., Davis J. W. 1985; Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Applied and Environmental Microbiology 49:1295–1303
    [Google Scholar]
  25. Shaw J. J., Kado C. I. 1987; Direct analysis of the invasiveness of Xanthomonas campestris mutants generated by Tn4431 a transposon containing a promoterlessluciferase cassette for monitoring gene expression. Molecular Genetics of Plant–Microbe Interactions57–60 Verma D. P. S., Brisson N. Dordrecht: Martinus Nijhoff;
    [Google Scholar]
  26. Shaw J. P., Harayama S. 1990; Purification and characterization of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida . European Journal of Biochemistry 191:705–714
    [Google Scholar]
  27. Suzuki M., Hayakawa T., Shaw J. P., Rekik M., Harayama H. 1991; Primary structure of xylene monooxygenase : similarities to and differences from the alkane-hydroxylation system. Journal of Bacteriology 173:1690–1695
    [Google Scholar]
  28. Thurnheer T., Köhler T., Cook A. M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria : growth physiology and enzymic desulphonation. Journal of General Microbiology 132:1215–1220
    [Google Scholar]
  29. Thurnheer T., Zürrer D., Höglinger O., Leisinger T., Cook A. M. 1990; Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acid and orthanilic acid in Alcaligenes sp. strain O-1. Biodegradation 1:54–63
    [Google Scholar]
  30. Towner K. J., Vivian A. 1976; RP4mediated conjugation in Acinetobacter calcoaceticus . Journal of General Microbiology 93:355–360
    [Google Scholar]
  31. Wales M. R., Fewson C. A. 1991; Comparison of the primary structures of NAD(P)-dependent bacterial alcohol dehydrogenases. Progress in Clinical and Biological Research (in the Press)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-9-2201
Loading
/content/journal/micro/10.1099/00221287-137-9-2201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error